optical modeling
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 52)

H-INDEX

34
(FIVE YEARS 2)

Optik ◽  
2021 ◽  
pp. 168302
Author(s):  
Talat Körpinar ◽  
Ahmet Sazak ◽  
Zeliha Körpinar

2021 ◽  
Vol 9 ◽  
Author(s):  
Pascal Freyer ◽  
Bodo D. Wilts ◽  
Doekele G. Stavenga

The iridescent plumage of many birds is structurally colored due to an orderly arrangement of melanosomes in their feather barbules. Here, we investigated the blue- to purple-colored feathers of the European starling (Sturnus vulgaris) and the blue and green feathers of the Cape starling (Lamprotornis nitens). In both cases, the barbules contain essentially a single layer of melanosomes, but in S. vulgaris they are solid and rod-shaped, and in L. nitens they are hollow and rod- as well as platelet-shaped. We analyzed the coloration of the feathers by applying imaging scatterometry, bifurcated-probe- and micro-spectrophotometry. The reflectance spectra of the feathers of the European starling showed multiple peaks and a distinct, single peak for the Cape starling feathers. Assuming that the barbules of the two starling species contain a simple multilayer, consisting locally only of a cortex plus a single layer of melanosomes, we interpret the experimental data by applying effective-medium-multilayer modeling. The optical modeling provides quantitative insight into the function of the keratin cortex thickness, being the principal factor to determine the peak wavelength of the reflectance bands; the melanosome layer only plays a minor role. The air cavity in the hollow melanosomes of the Cape starling creates a strongly enhanced refractive index contrast, thus very effectively causing a high reflectance.


2021 ◽  
Vol 22 (19) ◽  
pp. 10755
Author(s):  
Chiara Tramontano ◽  
Bruno Miranda ◽  
Giovanna Chianese ◽  
Luca De Stefano ◽  
Carlo Forestiere ◽  
...  

Inorganic diatomite nanoparticles (DNPs) have gained increasing interest as drug delivery systems due to their porous structure, long half-life, thermal and chemical stability. Gold nanoparticles (AuNPs) provide DNPs with intriguing optical features that can be engineered and optimized for sensing and drug delivery applications. In this work, we combine DNPs with gelatin stabilized AuNPs for the development of an optical platform for Galunisertib delivery. To improve the DNP loading capacity, the hybrid platform is capped with gelatin shells of increasing thicknesses. Here, for the first time, full optical modeling of the hybrid system is proposed to monitor both the gelatin generation, degradation, and consequent Galunisertib release by simple spectroscopic measurements. Indeed, the shell thickness is optically estimated as a function of the polymer concentration by exploiting the localized surface plasmon resonance shifts of AuNPs. We simultaneously prove the enhancement of the drug loading capacity of DNPs and that the theoretical modeling represents an efficient predictive tool to design polymer-coated nanocarriers.


2021 ◽  
Author(s):  
Yikang Qin ◽  
Miao Cai ◽  
Xindong Chen ◽  
Jinyang Li ◽  
Daoguo Yang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Javier Álvarez Ríos ◽  
Jose Diaz-Caro ◽  
Francisco Nombela ◽  
Ingrid Barba ◽  
Javier Exposito ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ahlem Jemai ◽  
Jochen Wollschläger ◽  
Daniela Voß ◽  
Oliver Zielinski

Over the past two decades, robotic technology such as Argo floats have revolutionized operational autonomous measurement of the oceans. Recently, Biogeochemical Argo floats (BGC-Argo floats) have measured optical and biogeochemical quantities down to a depth of 2,000 m. Among these parameters, are measurements of the underwater light field from which apparent optical properties (AOPs), such as the diffuse attenuation coefficient for downwelling irradiance Kd(λ), can be derived. Presently, multispectral observations are available on this platform at three wavelengths (with 10–20 nm bandwidths) in the ultraviolet and visible part of the spectrum plus the Photosynthetically Available Radiation (PAR; integrated radiation between 400 and 700 nm). This article reviews studies dealing with these radiometric observations and presents the current state-of-the-art in Argo radiometry. It focus on the successful portability of radiometers onboard Argo float platforms and covers applications of the obtained data for bio-optical modeling and ocean color remote sensing. Generating already high-quality datasets in the existing configuration, the BGC-Argo program must now investigate the potential to incorporate hyperspectral technology. The possibility to acquire hyperspectral information and the subsequent development of new algorithms that exploit these data will open new opportunities for bio-optical long-term studies of global ocean processes, but also present new challenges to handle and process increased amounts of data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dakota E. McCoy ◽  
Allison J. Shultz ◽  
Charles Vidoudez ◽  
Emma van der Heide ◽  
Jacqueline E. Dall ◽  
...  

AbstractBrilliantly-colored birds are a model system for research into evolution and sexual selection. Red, orange, and yellow carotenoid-colored plumages have been considered honest signals of condition; however, sex differences in feather pigments and microstructures are not well understood. Here, we show that microstructures, rather than carotenoid pigments, seem to be a major driver of male–female color differences in the social, sexually-dimorphic tanager genus Ramphocelus. We comprehensively quantified feather (i) color (using spectrophotometry), (ii) pigments (using liquid chromatography–mass spectrometry (LC–MS)), and (iii) microstructures (using scanning electron microscopy (SEM) and finite-difference time-domain (FDTD) optical modeling). Males have significantly more saturated color patches than females. However, our exploratory analysis of pigments suggested that males and females have concordant carotenoid pigment profiles across all species (MCMCglmm model, female:male ratio = 0.95). Male, but not female, feathers have elaborate microstructures which amplify color appearance. Oblong, expanded feather barbs in males enhance color saturation (for the same amount of pigment) by increasing the transmission of optical power through the feather. Dihedral barbules (vertically-angled, strap-shaped barbules) in males reduce total reflectance to generate “super black” and “velvet red” plumage. Melanin in females explains some, but not all, of the male–female plumage differences. Our results suggest that a widely cited index of honesty, carotenoid pigments, cannot fully explain male appearance. We propose that males are selected to evolve amplifiers—in this case, microstructures that enhance appearance—that are not necessarily themselves linked to quality.


Sign in / Sign up

Export Citation Format

Share Document