dual core
Recently Published Documents


TOTAL DOCUMENTS

1177
(FIVE YEARS 298)

H-INDEX

41
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Pibin Bing ◽  
Guifang Wu ◽  
Qing Liu ◽  
Zhongyang Li ◽  
Lian Tan ◽  
...  

Abstract The optical control ability of photonic crystal fiber (PCF) is a distinctive property suitable for improving sensing and plasma performance. This article proposes a dual-core D-channel PCF sensor that can detect two samples simultaneously, which effectively solves the problems of coating difficulty and low wavelength sensitivity. The PCF has four layers of air holes, which dramatically reduces the optical fiber loss and is more conducive to the application of sensors in actual production. In addition, by introducing dual cores on the upper and lower sides of the central air hole, reducing the spacing between the core and the gold nanolayer, a stronger evanescent field can be generated in the cladding air hole. The optical fiber sensor can detect the refractive index of two samples simultaneously with a maximum sensitivity of 21300 nm/RIU. To the best of our knowledge, the sensitivity achieved in this work is the highest sensitivity with the dual sample synchronous detection sensors. The detection range of the refraction index is 1.35-1.41, and the resolution of the sensor is 4.695×10-6. Overall, the sensor will be suitable for medical detection, organic chemical sensing, analyte detection, and other fields.


2022 ◽  
Author(s):  
Pibin Bing ◽  
Qing Liu ◽  
Guifang Wu ◽  
Sheng Yuan ◽  
Zhongyang Li ◽  
...  

Abstract In this paper, a dual-core microchannel-based fiber sensor is studied by using finite element method in the visible and near-infrared bands. Plasmonic material gold (Au) is deposited in microchannel to generate the surface plasmon resonance (SPR) effect, so that sensor can detect the change in RI of its surrounding analyte. Simulation results show that the maximum wavelength sensitivity and resolution are 33600nm/RIU and 2.97×10−6RIU for y polarization in the RI range of 1.33 to 1.44, respectively. The highest figure of merit (FOM) of the sensor is 961 for y polarization. In addition, we study the effects brought by the structural changes of the fiber sensor, and the results show that the design of “microchannel coating” dramatically improves the refractive index detection ability of the sensor. The D-shaped dual-core microchannel-based photonic crystal fiber sensor proposed in this paper has a simple structure, low manufacturing complexity, and high sensitivity. Combined with external sensing technology, this sensor has great application potential in the fields of biotechnology, medical diagnosis, and environmental protection.


Optik ◽  
2021 ◽  
pp. 168488
Author(s):  
Yanjun Zhang ◽  
Lizhi Wang ◽  
Pinggang Jia ◽  
Chengrui Zhai ◽  
Guowen An ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3256
Author(s):  
Lianzhen Zhang ◽  
Xuedian Zhang ◽  
Xuejing Liu ◽  
Jun Zhou ◽  
Na Yang ◽  
...  

The combination of mode division multiplexing (MDM) based on orbital angular momentum (OAM) modes with wavelength division multiplexing (WDM) has attracted considerable attention due to its ability to increase optical transmission capacity. However, the switching of the multi-wavelength and multi-order OAM mode in an all-fiber structure has always been a challenge. As a solution, a thermally tunable dual-core photonic crystal fiber (DC-PCF) is proposed to achieve multi-order and multi-wavelength switching of the OAM mode. The results show that the OAM mode with topological charge m = ±1 can be excited with the linear polarization fundamental mode (LPFM) and circular polarization fundamental mode (CPFM). In addition, the device can effectively excite a high-purity ±1st order OAM mode with wavelengths ranging from 1520 to 1575 nm by thermal tuning. The purity of the mode is in excess of 99%, and the energy conversion efficiency (ECE) is above 95%. The proposed design is expected to be applied in all-fiber communication systems combined with MDM and WDM.


2021 ◽  
Author(s):  
Yongtao Li ◽  
Jiesong Deng ◽  
Zhen Yang ◽  
Hui Zou ◽  
Yuzhou Ma

Abstract A novel ultra-broadband polarization splitter based on dual-core photonic crystal fiber (DC-PCF) is designed. The full-vector finite element method (FEM) and coupled-mode theory are employed to investigate the characteristics of the polarization splitter. According to the numerical results, graphene-filled layer can not only broaden the working bandwidth but also reduce the size of polarization splitter. Furthermore, the fluorine-doped region and the germanium-doped region could broaden the bandwidth. Apart from that, the 4.78-mm-long polarization splitter can achieve an extinction ratio of -98.6 dB at the wavelength of 1550 nm. When extinction ratio is less than -20 dB, the range of the wavelength is 1027-1723 nm with a bandwidth of 696 nm. Overall, the polarization splitter can be applied to all-optical network communication system in the infrared and near-infrared wavelength range.


Sign in / Sign up

Export Citation Format

Share Document