thermal radiations
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Adnan ◽  
Waqas Ashraf ◽  
Umar Khan ◽  
Amnah S. Al-Johani ◽  
Naveed Ahmed ◽  
...  

AbstractThe dynamics of nanofluid by considering the role of imposed Lorentz forces, thermal radiations and velocity slip effects over a vertically convectively heated surface is a topic of huge interest. Therefore, the said study is conducted for Al2O3-H2O nanofluid. Mathematical modelling of the problem is done via nanofluid effective correlations comprising the influences of freezing temperature, molecular diameter and similarity transformations. The results for multiple parameters are plotted and provide comprehensive discussion. From the analysis, it is examined that Al2O3-H2O nanofluid motion drops by strengthening Lorentz forces. The temperature in the nanofluid (Al2O3-H2O) is improved by inducing viscous dissipation effects (Ec number), surface convection (Biot number) and thermal radiations (Rd). Moreover, the shear stresses at the surface decreased due to higher magnetic field effects and rises due to velocity slip. A significant rise in Local Nusselt number is observed due to thermal radiations and Biot effects. Finally, enhanced heat transport mechanism in Al2O3-H2O is examined than a conventional liquid. Therefore, nanofluids are better for industrial applications and the uses of conventional liquids are limited due to low thermal conductivity.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Adnan ◽  
Waqas Ashraf ◽  
Abdulaziz H. Alghtani ◽  
Ilyas Khan ◽  
M. Andualem

The analysis of nanofluid dynamics in a bounded domain attained much attention of the researchers, engineers, and industrialists. These fluids became much popular in the researcher’s community due to their broad uses regarding the heat transfer in various industries and fluid flowing in engine and in aerodynamics as well. Therefore, the analysis of Cu-kerosene oil and Cu-water is organized between two Riga plates with the novel effects of thermal radiations and surface convection. The problem reduced in the form of dimensionless system and then solved by employing variational iteration and variation of parameter methods. For the sake of validity, the results checked with numerical scheme and found to be excellent. Further, it is examined that the nanofluids move slowly by strengthen Cu fraction factor. The temperature of Cu-kerosene oil and Cu-water significantly rises due to inducing thermal radiations and surface convection. The behaviour of shear stresses is in reverse proportion with the primitive parameters, and local Nusselt number increases due to varying thermal radiations, Biot number, and fraction factor, respectively.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5531
Author(s):  
Asad Ullah ◽  
Ikramullah ◽  
Mahmoud M. Selim ◽  
Thabet Abdeljawad ◽  
Muhammad Ayaz ◽  
...  

This study is related to the heat energy transfer during 3D nanofluid (water-based) motion over a rotating surface by incorporating the combined impacts of thermal radiations and couple stress. The flow is modeled by a set of non-linear coupled PDEs, which is converted to a set of coupled non-linear ODEs by using suitable similarity transformations. The transformed equations are solved with the built-in NDSolve command. The effects of relevant interesting parameters on the nanofluid velocity components and temperature distribution are explained through various graphs. It is found that the velocity component f(η) is increased with higher values of γ and A0 while it drops with an increasing rotation parameter and nanoparticle volume fraction. The fluid temperature increases with higher αnf, Rd, ϵ2, ϵ3, A1 and drops with increasing Pr, ϵ1 and couple stress parameter (A0). The Nusselt number remains constant at a fixed Pr and Rd, whereas it increases with increasing Pr and is reduced with rising Rd. A comparison between the achieved results is carried out with the analytical results through different tables. An excellent agreement is observed between these results.


2021 ◽  
Author(s):  
Tanveer Sajid ◽  
Wasim Jamshed ◽  
Faisal Shahzad ◽  
Mohamed R. Eid ◽  
Esra Karataş Akgül ◽  
...  

Abstract Solar energy is about the study of solar radiations and a method to enhance the efficacy of solar aircrafts with the utilization of solar radiations and nanotechnology. Solar radiations has been considered a heat source. The heat transmission performance of the wings is scrutinized for the situation of various effects like thermal radiations, heat generation, variant thermal conductance, thermal conductivity, and viscidness dissipative flow. Entropy generation analysis has been carried out in the status of Reiner Philippoff nanofluid (RPNF). The performance of the solar aircraft wings (SACW) improves in relations of thermal transmission for the status of amplification in thermal radiation, heat generation, viscidness dissipative flowing, and thermal conductivity parameters.


AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085018
Author(s):  
Jifeng Cui ◽  
Musawara Safeer ◽  
Umer Farooq ◽  
Mohammed Elamin Ahmed Rabie ◽  
Taseer Muhammad

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 842-852
Author(s):  
Yu-Ming Chu ◽  
Adnan ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
...  

Abstract The aim of this study is to investigate the heat and mass transport over a stretchable surface. The analysis is prolonged to the concept of thermal radiations and chemical reaction over a differentially heated surface with internal heating. This is significant from an engineering and industrial point of view. The nonlinear model is successfully attained by adopting the similarity transforms and then further computation is done via a hybrid Runge–Kutta algorithm coupled with shooting technique. The behavior of fluid velocity and heat and mass transport are then furnished graphically for feasible ranges of parameters. A comprehensive discussion of the results is provided against multiple parameters. Foremost, the local thermal performance and mass transport rate are explained via numerical computation. The major outcomes of the study are described in the end.


Author(s):  
Gulmina Zaman Babar ◽  
Abdullah Zaman Babar ◽  
Farruh Atamurotov

Abstract We have studied the null geodesics in the background of the Kerr–Newman black hole veiled by a plasma medium using the Hamilton–Jacobi method. The influence of black hole’s charge and plasma parameters on the effective potential and the generic photon orbits has been investigated. Furthermore, our discussion embodies the effects of black hole’s charge, plasma and the inclination angle on the shadow cast by the gravity with and without the spin parameter. We examined the energy released from the black hole as a result of the thermal radiations, which exclusively depends on the size of the shadow. The angle of deflection of the massless particles is also explored considering a weak-field approximation. We present our results in juxtaposition to the analogous black holes in General Relativity, particularly the Schwarzschild and Kerr black hole.


Sign in / Sign up

Export Citation Format

Share Document