radar measurements
Recently Published Documents


TOTAL DOCUMENTS

1265
(FIVE YEARS 174)

H-INDEX

58
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Cemil Akçay ◽  
Nail Mahir Korkmaz ◽  
Baris Sayin

Abstract This study, presented in a pair of articles, defines a comprehensive methodological approach to the reconstruction of a traditional masonry-timber mansion building constructed in the 1880s of the Turkish house typology on Istanbul’s historical peninsula area that was intentionally demolished in 1948. A historical process research was carried out in the first stage of the study, after which ground penetration radar measurements and an archeological excavation were carried out to determine any possible remains or ruins of the structure, and the original architectural features of the demolished building were ascertained from the obtained data. The proposed stages in the current paper can be considered a comprehensive approach to the determination of the authentic properties of demolished or destroyed buildings in historical areas, given that the methodology allows for the integration of construction features obtained separately and independently through different activities, such as excavations, georadar measurements and historical surveys. The result is a versatile approach to the complete and realistic reconstruction of historical buildings.


2021 ◽  
Vol 13 (12) ◽  
pp. 5899-5914
Author(s):  
Martin Hagen ◽  
Florian Ewald ◽  
Silke Groß ◽  
Lothar Oswald ◽  
David A. Farrell ◽  
...  

Abstract. The German polarimetric C-band weather radar Poldirad (Polarization Diversity Radar) was deployed for the international field campaign EUREC4A (Elucidating the role of clouds–circulation coupling in climate) on the island of Barbados where it was operated from February until August 2020. Focus of the installation was monitoring clouds and precipitation in the trade wind region east of Barbados. Different scanning modes were used with a temporal sequence of 5 min and a maximum range of 375 km. In addition to built-in quality control performed by the radar signal processor, it was found that the copoloar correlation coefficient ρHV can be used to remove contamination of radar products by sea clutter. Radar images were available in real time for all campaign participants and aboard research aircraft. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution are given to show the potential of the radar measurements for further studies on the life cycle of precipitating shallow cumulus clouds and other related aspects. Poldirad data from the EUREC4A campaign are available on the EUREC4A AERIS database: https://doi.org/10.25326/218 (Hagen et al., 2021a) for raw data and https://doi.org/10.25326/217 (Hagen et al., 2021b) for gridded data.


2021 ◽  
Vol 14 (11) ◽  
pp. 7243-7254
Author(s):  
Kamil Mroz ◽  
Alessandro Battaglia ◽  
Cuong Nguyen ◽  
Andrew Heymsfield ◽  
Alain Protat ◽  
...  

Abstract. An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterised by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment For Future Precipitation Mission. During this campaign, in situ microphysical probes were mounted on the same aeroplane as the radars. This nearly perfectly co-located dataset of the remote and in situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content (IWC) and mean mass-weighted diameters obtaining root-mean-square errors of 0.13 and 0.15, respectively, for log 10IWC and log 10Dm. The retrieval of the degree of riming is more challenging, and only the algorithm that uses Doppler information obtains results that are highly correlated with the in situ data.


2021 ◽  
Vol 39 (6) ◽  
pp. 961-974
Author(s):  
Johann Stamm ◽  
Juha Vierinen ◽  
Björn Gustavsson

Abstract. Measurements of height-dependent electric field (E) and neutral wind (u) are important governing parameters of the Earth's upper atmosphere, which can be used to study, for example, how auroral currents close or how energy flows between the ionized and neutral constituents. The new EISCAT 3D (E3D) incoherent scatter radar will be able to measure a three-dimensional ion velocity vector (v) at each measurement point, which will allow less stringent prior assumptions about E and u to be made when estimating them from radar measurements. This study investigates the feasibility of estimating the three-dimensional electric field and neutral wind vectors along a magnetic field-aligned profile from E3D measurements, using the ion momentum equation and Maxwell's equations. The uncertainty of ion drift measurements is estimated for a time and height resolution of 5 s and 2 km. With the most favourable ionospheric conditions, the ion wind at E region peak can be measured with an accuracy of less than 1 m/s. In the worst case, during a geomagnetically quiet night, the uncertainty increases by a factor of around 10. The uncertainty of neutral wind and electric field estimates is found to be strongly dependent on the prior constraints imposed on them. In the lower E region, neutral wind estimates have a lower standard deviation than 10 m/s in the most favourable conditions. In such conditions, also the F region electric field can be estimated with uncertainty of about 1 mV/m. Simulated measurements of v are used to demonstrate the ability to resolve the field-aligned profile of E and u. However, they can only be determined well at the heights where they dominate the ion drift, that is above 125 km for E and below 115 km for u. At the other heights, the results are strongly dependent on the prior assumptions of smoothness.


2021 ◽  
Vol 906 (1) ◽  
pp. 012063
Author(s):  
Milan Talich ◽  
Jan Havrlant ◽  
Filip Antoš ◽  
Lubomír Soukup

Abstract Ground-based radar interferometry (GBRI) with ground-based real aperture radar (GB-RAR) is most often used for monitoring vertical deflections of bridge structures caused by vehicle passages. This paper presents an experimental determining of the horizontal dynamic movements of water tower reservoirs by GB-RAR. Determining the dynamic movements of water tower reservoirs is more complicated precisely because the movement of the reservoir is influenced not only by external influences, such as wind, but also by the movement of water mass in the reservoir. The resulting oscillation is then a composite oscillation of multiple frequencies. Next, in the case of routine determination of vertical deflections of bridge structures, it is reasonable to assume a predominant deflection of the structure in this one particular direction. But in the case of tower structures such as reservoirs, it is necessary to assume their movements (oscillations) in the entire horizontal plane. The movements can be circular, elliptical, straight, spiral, or even completely irregular. This means using at least two radars to simultaneously determine 2D movements (in both perpendicular directions of the horizontal plane). In the optimal case, the radars aim at the monitored object in approximately perpendicular directions to each other, and the resulting motion vectors in the horizontal plane are calculated from LOS measurements. The processing of measurements from both radars raises other problems, namely accurate time synchronization of radar measurements. In case of tower structures, time synchronization cannot be solved by coincidence of oscillation amplitude peaks, since the peaks from different radar views may not occur simultaneously. Therefore, alternative solution is offered in this contribution. Purpose of this contribution is to design and verify a procedure for accurate determination of horizontal movements of tower reservoirs with sufficiently accurate oscillation characteristics. The procedure was experimentally verified in practice on a real water reservoir in central Bohemia. The results of the experiment confirm the expected benefits of simultaneous measurements by two radars for determining horizontal dynamic movements of water tower reservoirs by GB-RAR.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012022
Author(s):  
L A Petrenko ◽  
I E Kozlov

Abstract Based on analysis of spaceborne synthetic aperture data (SAR), acquired in summer of 2007 over Fram Strait and around Svalbard, we investigate spatial and temporal variability of the ice edge and generation of eddies in the marginal ice zone. During the season, the ice-water boundary nonuniformly moves along its entire length with the overall width of the ice edge displacement ranging from 30 to 220 km. The ice edge movement is often accompanied by generation of eddies and filaments peaking in August. Analysis of the data serves to find out over 2000 distinct MIZ eddies with a clear dominance of cyclones (78%). In July the detected eddies are predominantly formed along the ice edge, in August most of them are generated inside the MIZ, while in September their numbers along the ice edge and within the MIZ are similar. Larger eddies (10-20 km in diameter) are found over deep Fram Strait and the Greenland Sea shelf, while smaller eddies (~5 km) are observed in coastal regions around Svalbard.


2021 ◽  
Author(s):  
Leung Tsang ◽  
Michael Durand ◽  
Chris Derksen ◽  
Ana P. Barros ◽  
Do-Hyuk Kang ◽  
...  

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.


Sign in / Sign up

Export Citation Format

Share Document