grain size distributions
Recently Published Documents


TOTAL DOCUMENTS

471
(FIVE YEARS 108)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Katharina Tholen ◽  
Thomas Pähtz ◽  
Hezi Yizhaq ◽  
Itzhak Katra ◽  
Klaus Kroy

AbstractAeolian sand transport is a major process shaping landscapes on Earth and on diverse celestial bodies. Conditions favoring bimodal sand transport, with fine-grain saltation driving coarse-grain reptation, give rise to the evolution of megaripples with a characteristic bimodal sand composition. Here, we derive a unified phase diagram for this special aeolian process and the ensuing nonequilibrium megaripple morphodynamics by means of a conceptually simple quantitative model, grounded in the grain-scale physics. We establish a well-preserved quantitative signature of bimodal aeolian transport in the otherwise highly variable grain size distributions, namely, the log-scale width (Krumbein phi scale) of their coarse-grain peaks. A comprehensive collection of terrestrial and extraterrestrial data, covering a wide range of geographical sources and environmental conditions, supports the accuracy and robustness of this unexpected theoretical finding. It could help to resolve ambiguities in the classification of terrestrial and extraterrestrial sedimentary bedforms.


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


2021 ◽  
pp. 1-9
Author(s):  
Fuyuan Gao ◽  
Junhuai Yang ◽  
Shuyuan Wang ◽  
Youjun Wang ◽  
Kaiming Li ◽  
...  

Abstract The mid-latitude Westerlies (MLW) are one of the most important atmospheric circulation systems in the Northern Hemisphere, exerting a huge influence on the climate of the region downwind, and thus on vegetation, water resources, and human wellbeing. However, the seasonal variation of the MLW during the Holocene is not yet been fully understood, especially when its contribution is the most important. Here, we used end-member (EM) modeling analysis of the grain-size distributions of a high-altitude aeolian sedimentary sequence (4452 m a.s.l.) from the Yarlung Zangbo River valley in the southern Tibetan Plateau to reveal variations in the winter MLW during the Holocene. Analysis of seasonal differences in modern atmospheric circulation suggests that the southern Tibetan Plateau was heavily influenced by the mid-latitude Westerlies at the 400, 500, and 600 hPa levels in winter, while it was seldom influenced at these levels in summer. Four grain-size end-members are identified, representing distinct aerodynamic environments, of which EM1 (modal grain size 8.1 μm) can be used as a proxy of the winter MLW. A reconstruction of the variation of the winter MLW during the Holocene based on EM1 revealed that a weaker winter MLW occurred during the Early to Middle Holocene, and a stronger winter MLW during the Middle to Late Holocene. Overall, we suggest that this change in the winter MLW was closely related to the insolation/temperature/pressure gradient between low and high latitudes in the Northern Hemisphere.


2021 ◽  
pp. 139003
Author(s):  
Omar Al-Zuhairi ◽  
Afiq Anuar ◽  
Abdullah Haaziq Ahmad Makinudin ◽  
Ahmad Shuhaimi Abu Bakar ◽  
M.N. Azlan ◽  
...  

Author(s):  
Emoke Imre ◽  
István Talata ◽  
Daniel Barreto ◽  
Maria Datcheva ◽  
Wiebke Baille ◽  
...  

Why fractal distribution is so frequent? It is true that fractal dimension is always less than 3? Why fractal dimension of 2.5 to 2.9 seems to be steady-state or stable? Why the fractal distributions are the limit distributions of the degradation path? Is there an ultimate distribution? It is shown that the finite fractal grain size distributions occurring in the nature are identical to the optimal grading curves of the grading entropy theory and, the fractal dimension n varies between –¥ and ¥. It is shown that the fractal dimensions 2.2–2.9 may be situated in the transitional stability zone, verifying the internal stability criterion of the grading entropy theory. Micro computed tomography (μCT) images and DEM (distinct element method) studies are presented to show the link between stable microstructure and internal stability. On the other hand, it is shown that the optimal grading curves are mean position grading curves that can be used to represent all possible grading curves.


2021 ◽  
Author(s):  
Axel Montalvo-Bartolomei ◽  
Bryant Robbins ◽  
Erica Medley ◽  
Benjamin Breland

Using a confined flume device, an experimental study investigated the critical horizontal gradient of soils obtained from a site identified as potentially vulnerable to backward erosion piping (BEP). Tests were conducted on glacial outwash material obtained from a sand and gravel quarry in the vicinity of Magnolia Levee in the community of Magnolia, OH. The two bulk samples collected from the quarry had similar grain-size distributions, grain roundness, and depositional environments as the foundation materials beneath the levee. Samples were prepared at various densities and subjected to gradual increases of flow in a wooden flume with an acrylic top until BEP was observed. The critical average horizontal gradient ranged from 0.21 to 0.30 for a bulk sample with a coefficient of uniformity of 1.6, while tests conducted on a bulk sample with a coefficient of uniformity of 2.5 yielded critical average horizontal gradients of 0.31 to 0.36. The critical average gradients measured during these tests compared favorably to values in the literature after applying adjustments according to Schmertmann’s method.


2021 ◽  
Author(s):  
Ankit Garg ◽  
Insha Wani ◽  
Honghu Zhu ◽  
Vinod Kushvaha

Abstract Recently, incentives have been provided in many countries, including Canada and Denmark, to produce biochar for construction usage. This is done because biochar is carbon negative and can help achieve the emission reduction goal of 2030. This technical note aims to analyze the efficiency of biochar in soils with varying grain size distribution for enhancing water retention capacity (WRC). The combinations of biochar content and grain size distributions corresponding to the maximum and minimum efficiency were explored. Artificial Neural Network (ANN) based model for predicting Soil Water Characteristic Curve (SWCC) as a function of soil suction and grain size distribution was developed. A new factor (the ratio of fine (silt + clay) and coarse (sand) content) was proposed for the interpretation of the efficiency of biochar in soils. The newly developed model is able to predict SWCC reasonably well. Biochar amendment is found to influence both dry and wet sides of soils with a clay content lower than threshold content (6–8%). Beyond threshold content, the influence of biochar appears to reduce. However, in the case of high sand content soils (90%), the NWC value on the drier side is generally higher as compared to soils with lower sand content. Based on sensitivity analysis, it was found that the ratio of fine to sand content is the most influential, while biochar content is the least influential.


2021 ◽  
Vol 13 (18) ◽  
pp. 10148
Author(s):  
Hoang Giang Nguyen ◽  
Dung Tien Nguyen ◽  
Ha Tan Nghiem ◽  
Viet Cuong Tran ◽  
Akira Kato ◽  
...  

This study collected basic information and conducted waste composition surveys to identify the present management condition of construction and demolition waste (CDW) landfills in Hanoi of Vietnam and to characterize waste composition and grain size distribution of CDW dumped at landfills. Basic information on seven CDW landfills under operation or closed/abandoned was collected, and the waste composition and the grain size distributions of dumped CDW at two landfills were investigated. Results showed that only one landfill site is currently under operation in Hanoi. Sanitary conditions of investigated landfills were relatively good without dumping of hazardous waste. Illegal dumping of domestic waste from residents, however, could be observed more or less at all sites due to an unclear boundary between dumping and surrounding areas. To improve current management of CDW landfills, a suitable recording system of accepted/dumped CDW and technical support for site managers are required as well as the implementation plan for developing and renovating landfills. Based on the results of the waste composition survey, the major components of dumped CDW were “Concrete”, “Clay bricks”, and “Soil-like”, and the sum of these materials reached >80% of the total. Grain size distributions of “Concrete” ranged from 10–600 mm and of “Clay bricks” ranged from 10–300 mm. Technical recommendations to examine a potential availability of dumped “Concrete” and “Clay bricks” as a base material in road construction are summarized from the viewpoints of segregation from “Soil-like” and impurities, grading of “Concrete” and “Clay bricks”, mechanical properties and environmental safety, and economic feasibility. The findings in this study raise challenges and perspectives to establish sound CDW management and to promote sustainable development of CDW recycling in Vietnam.


Sign in / Sign up

Export Citation Format

Share Document