fracture of materials
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Serveh Kamrava ◽  
Pejman Tahmasebi ◽  
Muhammad Sahimi ◽  
Sepehr Arbabi

2021 ◽  
Vol 11 (15) ◽  
pp. 6718
Author(s):  
Aleksander Sendrowicz ◽  
Aleksander Omholt Myhre ◽  
Seweryn Witold Wierdak ◽  
Alexei Vinogradov

A current trend in mechanical testing technologies is to equip researchers and industrial practitioners with the facilities for non-destructive characterisation of the deformation and fracture processes occurring on different scales. The synergistic effect of such a combination of destructive and non-destructive techniques both widens and deepens existing knowledge in the field of plasticity and fracture of materials and provides the feedback sought to develop new non-destructive testing approaches and in situ monitoring techniques with enhanced reliability, accuracy and a wider scope of applications. The macroscopic standardised mechanical testing is still dominant in the research laboratories and industrial sector worldwide. The present paper reviews multiple challenges commonly faced by experimentalists, aiming at enhancing the capability of conventional mechanical testing by a combination of contemporary infrared thermography (IRT), rapid video imaging (RVI) with non-contact strain mapping possibilities enabled by the digital image correlation (DIC) method, and the acoustic emission (AE) technique providing unbeatable temporal resolution of the stochastic defect dynamics under load. Practical recommendations to address these challenges are outlined. A versatile experimental setup uniting the unique competencies of all named techniques is described alone with the fascinating possibilities it offers for the comprehensive characterisation of damage accumulation during plastic deformation and fracture of materials. The developed toolbox comprising practical hardware and software solutions brings together measuring technologies, data, and processing in a single place. The proposed methodology focuses on the characterisation of the thermodynamics, kinematics and dynamics of the deformation and fracture processes occurring on different spatial and temporal scales. The capacity of the proposed combination is illustrated using preliminary results on the tensile and fatigue behaviour of the fcc Inconel-625 alloy used as a representative example. Dissipative processes occurring in this alloy are assessed through the complex interplay between the released heat, acoustic emission waves, and expended and stored elastic energy.


Author(s):  
Clément Cadet ◽  
Jacques Besson ◽  
Sylvain Flouriot ◽  
Samuel Forest ◽  
Pierre Kerfriden ◽  
...  

2021 ◽  
Vol 227 (2) ◽  
pp. 243-257
Author(s):  
Seyyed Ahmad Hosseini ◽  
Paolo Moretti ◽  
Dimitrios Konstantinidis ◽  
Michael Zaiser

AbstractWe introduce a beam network model for hierarchically patterned materials. In these materials, load-parallel gaps intercept stress transmission in the load perpendicular direction in such a manner that damage is confined within hierarchically nested, load-carrying ‘modules’. We describe the morphological characteristics of such materials in terms of deterministically constructed, hierarchical beam network (DHBN) models and randomized variants thereof. We then use these models to analyse the process of damage accumulation (characterized by the locations and timings of beam breakages prior to global failures, and the concomitant avalanche statistics) and of global failure. We demonstrate that, irrespective of the degree of local disorder, failure of hierarchically (micro)structured materials is characterized by diffuse local damage nucleation which ultimately percolates on the network, but never by stress-driven propagation of a critical crack. Failure of non hierarchical reference networks, on the other hand, is characterized by the sequence of damage nucleation, crack formation and crack propagation. These differences are apparent at low and intermediate degrees of material disorder but disappear in very strongly disordered materials where the local failure strengths exhibit extreme scatter. We furthermore demonstrate that, independent of material disorder, the different modes of failure lead to significant differences in fracture surface morphology.


2021 ◽  
Vol 250 ◽  
pp. 02025
Author(s):  
Maxim Yu. Orlov ◽  
Viktor Glazyrin ◽  
Yulia Orlova

A numerical analysis on impact response of multilayer plates and plates with a gradient substrate against steel projectile perforation was made. The shear strength was varied in the substrate within a certain range. The behavior of bodies is modeled by an elastic-plastic, porous, compressible medium, taking into account shock-wave phenomena and fragmentary fracture of materials. A numerical lagrangian method with modified node splitting algorithms was used. Good agreement between the computed and experimental results was obtained. During perforation, pattern of destruction of all plates has been investigated. The results show impact resistance of plates with a gradient substrate was greater than the homogeneous steel one, but less than multilayer ones. However, the impact resistance of multilayer plates is explained by the pinching effect of the layers.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4901
Author(s):  
Miguel Muñiz-Calvente ◽  
Alfonso Fernández-Canteli

When designing structural and mechanical components, general structural integrity criteria must be met in order to ensure a valid performance according to its designed function, that is, supporting loads or resisting any kind of action causing stress and strains to the material without catastrophic failure. For these reasons, the development of solutions to manage the test conditions, failure mechanism, damage evolution, component functionalities and loading types should be implemented. The aim of this Special Issue “Probabilistic Mechanical Fatigue and Fracture of Materials” is to contribute to updating current and future state-of-the-art methodologies that promote an objective material characterization and the development of advanced damage models that ensure a feasible transferability from the experimental results to the design of real components. This is imbricated in some probabilistic background related to theoretical and applied fracture and fatigue theories, and advanced numerical models applied to some real application examples.


Sign in / Sign up

Export Citation Format

Share Document