n balance
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 49)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 324 ◽  
pp. 107714
Author(s):  
Santiago Tamagno ◽  
Alison J. Eagle ◽  
Eileen L. McLellan ◽  
Chris van Kessel ◽  
Bruce A. Linquist ◽  
...  

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Ilona Anna Geicsnek-Koltay ◽  
Zsuzsanna Benedek ◽  
Nóra Hegedűsné Baranyai ◽  
Nikoletta Such ◽  
László Pál ◽  
...  

The effects of feeding low-protein (LP) diets and the age and genotype of fattening pigs were evaluated in an N-balance trial. Sixty weaned piglets of two genotypes were allotted to three different diets. Besides the control diets for the crossbred Topigs 20 × DanBred Duroc (TD) and Hungarian Large White (HLW) pigs, two LP diets were fed containing 1.5 (T1.5) and 3% (T3) less dietary protein than the control. The LP diets were supplemented with crystalline lysine, threonine, tryptophan, and methionine to equalize their digestible amino acid contents. Starter diets were fed between 20–30, grower I between 30–40, grower II between 40–80 and finisher between 80–110 kg live weights. Pigs were kept in floor pens, with 10 animals per pen. In all phases, six pigs with similar live weight were placed into individual balance cages and in the frame of a seven-day long balance trial, the daily N-intake, fecal and urinary N-excretion were measured. From the data N-digestibility, the total ammoniacal nitrogen (TAN) and N-retention were calculated. All the investigated main factors, the genotype and age of pigs and the protein content of the diets had significant effects on the N-balance of fattening pigs. The determinacy of the factors depended on the investigated parameter. Fecal N-excretion and N-digestibility were steadier compared with the urinary N-exertion and TAN percentage. N-digestibility increased and the urinary N-excretion decreased when LP diets were fed. The urinary N-decreasing effect of LP diets was not linear. Compared with the control (19.6 gN/day), T1.5 treatment resulted in 14.5, treatment T3 in 12.4 g daily urinary N-excretion. The TAN and the N-retention of HLW pigs were more favorable than those of TD pigs. Based on our results, it can be concluded that the accuracy of the nitrogen and TAN excretion values of pigs, used in the calculation of the national NH3 inventories, could be improved if the genotype, the more detailed age categories and the different protein levels of feeds are considered.


2022 ◽  
Author(s):  
Konrad Krämer ◽  
Gabi Kepp ◽  
Judith Brock ◽  
Simon Stutz ◽  
Arnd G. Heyer
Keyword(s):  
De Novo ◽  

Author(s):  
Joyce Barcellos ◽  
Warley Júnior Alves ◽  
Pedro Riguetti Arnaut ◽  
Lucimauro Fonseca ◽  
Jorge Cunha Lima Muniz ◽  
...  

Abstract To evaluate the effect of an E. coli lipopolysaccharide (LPS) challenge on the digestible lysine (Lys) requirement for growing pigs, a nitrogen (N) balance assay was performed. Seventy-two castrated male pigs [19 ± 1.49 kg body weight (BW)] were allocated in a 2 x 6 factorial design composed of two immune activation states (control and LPS-challenged) and 6 dietary treatments with N levels of 0.94, 1.69, 2.09, 3.04, 3.23 and 3.97% N, as fed, where Lys was limiting, with six replicates and one pig per unit. The challenge consisted of an initial LPS dose of 30 μg/kg BW via intramuscular (IM) injection and a subsequent dose of 33.6 μg/kg BW after 48 h. The experimental period lasted 11 days and was composed of a 7-day adaptation and a subsequent 4-day sampling period in which N intake (NI), N excretion (NEX) and N deposition (ND) were evaluated. Inflammatory mediators and rectal temperature were assessed during the 4-day collection period. A 3-way interaction (N levels × LPS challenge × time, P < 0.05) for IgG was observed. Additionally, 2-way interactions (challenge × time, P < 0.05) were verified for IgA, ceruloplasmin, transferrin, haptoglobin, α-1-acid glycoprotein, total protein, and rectal temperature; and (N levels × time, P < 0.05) for transferrin, albumin, haptoglobin, total protein and rectal temperature. LPS-challenged pigs showed lower (P < 0.05) feed intake. A 2-way interaction (N levels × LPS challenge, P < 0.05) was observed for NI, NEX and ND, with a clear dose-response (P < 0.05). LPS-challenged pigs showed lower NI and ND at 2.09% N and 1.69 to 3.97% N (P < 0.05), respectively, and higher NEX at 3.23% N (P < 0.05). The parameters obtained by a nonlinear model (N maintenance requirement, NMR and theoretical maximum N deposition, NDmaxT) were 152.9 and 197.1 mg/BWkg  0.75/d for NMR, and 3,524.7 and 2,077.8 mg/BWkg  0.75/d for NDmaxT, for control and LPS-challenged pigs, respectively. The estimated digestible Lys requirements were 1,994.83 and 949.16 mg/BWkg  0.75/d for control and LPS-challenged pigs, respectively. The daily digestible Lys intakes required to achieve 0.68 and 0.54 times the NRmaxT value were 18.12 and 8.62 g/d, respectively, and the optimal dietary digestible Lys concentration may change depending on the feed intake levels. Based on the derived model parameters obtained in the N balance trial with lower cost and time, it was possible to differentiate the digestible Lys requirement for swine under challenging conditions.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106576118
Author(s):  
Yulong Yin ◽  
Rongfang Zhao ◽  
Yi Yang ◽  
Qingfeng Meng ◽  
Hao Ying ◽  
...  

Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil–crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.


2021 ◽  
Vol 291 ◽  
pp. 112713
Author(s):  
Roxelane Cakir ◽  
Sabine Sauvage ◽  
Romain Walcker ◽  
Magali Gerino ◽  
Eva Rabot ◽  
...  

2021 ◽  
Author(s):  
Guangfu Huang ◽  
Yujiao Zhang ◽  
Shilai Zhang ◽  
Jing Zhang ◽  
Shuxian Gan ◽  
...  

Abstract Aims: In the absence of tillage, perennial rice is an innovation and supplement to rice production. Evaluating crop N uptake and N requirements and maintaining soil N balance are essential for informing decisions regarding optimal N management and the accessibility of the soil environment benefits of perennial rice cropping systems. Methods: To assess the soil nitrogen cycle and balance, formulate optimal N fertilizer management for perennial rice, a field experiment with four nitrogen rates (N0, N1, N2 and N3 refer to 0, 120, 180 and 240 kg N ha-1, respectively) integrated with three planting densities (D1, D2 and D3 refer to 100×103, 167×103 and 226×103 plants ha-1, respectively) was conducted for two years over four seasons (2016-2017) in southern China. Results: The results showed that N2D3 mode could sustainably produce higher dry matter accumulation (15.15 t ha-1) and grain yields (7.67 t ha-1) over four seasons, showed significantly higher N uptake (201 kg ha-1 each season) and less soil N loss (27.1%). Additionally, the N2D3 mode could reach the optimal N balance (-0.2 kg ha-1) in perennial rice fields with low N requirements (23.9 kg N Mg-1 grain), resulting in higher N use efficiency (NAE: 26.5 kg N kg-1, NRE: 64.9%). Conclusion: In the perennial rice cropping system, 180 kg N ha-1 integrated with 226×103 plants ha-1 resulted in higher grain yields with lower N requirements, higher N use efficiencies, and lower soil N losses, thereby maintaining the soil N balance for sustainable perennial rice production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anaiane P. Souza ◽  
Julián A. C. Vargas ◽  
Marcia H. M. R. Fernandes ◽  
Amélia K. Almeida ◽  
Kleber T. Resende ◽  
...  

This study aimed to estimate the protein requirements for the maintenance of growing Saanen goats of different sexes from 5 to 45 kg of body weight (BW) using two methods and applying a meta-analysis. For this purpose, two datasets were used. One dataset was used to evaluate the effects of sex on the protein requirements for maintenance using the comparative slaughter technique. This dataset was composed of 185 individual records (80 intact males, 62 castrated males, and 43 females) from six studies. The other dataset was used to evaluate the effects of sex on the protein requirements for maintenance using the N balance method. This dataset was composed of 136 individual records (59 intact males, 43 castrated males, and 34 females) from six studies. All studies applied an experimental design that provided different levels of N intake and different levels of N retention, allowing the development of regression equations to predict the net protein requirement for maintenance (NPM) and the metabolizable protein (MP) requirements for maintenance (MPM) in Saanen goats. The efficiency of MP use for maintenance (kPM) was computed as NPM/MPM. The efficiency of MP use for gain (kPG) was calculated using the equation of daily protein retained against daily MP intake above maintenance. A meta-analysis was applied using the MIXED procedure of SAS, in which sex was considered a fixed effect, and blocks nested in the studies and goat sex were considered as random effects. The NPM did not differ between sexes, irrespective of the approach used. The daily NPM estimated was 1.23 g/kg0.75 BW when using the comparative slaughter technique, while it was 3.18 g/kg0.75 BW when using the N balance technique for growing Saanen goats. The MPM estimated was 3.8 g/kg0.75 BW, the kPM was 0.33, and the kPG was 0.52. We observed that the NPM when using the comparative slaughter technique in growing Saanen goats is lower than that recommended by the current small ruminant feeding systems; on the other hand, the MPM was similar to previous reports by the feeding systems. Sex did not affect the protein requirements for maintenance and the efficiencies of use of metabolizable protein.


Author(s):  
Lucie Chmelíková ◽  
Harald Schmid ◽  
Sandra Anke ◽  
Kurt-Jürgen Hülsbergen

AbstractOptimising nitrogen (N) management improves soil fertility and reduces negative environmental impacts. Mineral N fertilizers are of key importance in intensive conventional farming (CF). In contrast, organic farming (OF) is highly dependent on closed nutrient cycles, biological N fixation and crop rotations. However, both systems need to minimise N balances and maximise nitrogen-use efficiency (NUE). NUE of organic and conventional crop production systems was evaluated in three regions in Germany by analysing N input, N output and N balance of 30 pairs of one OF and one CF farm each from the network of pilot farms for the period 2009–2011; indicators were calculated using the farm management system REPRO. CF had higher N input in all farm pairs. In 90% of the comparisons, N output of CF was higher than OF, in 7% it was the same and in 3% lower. NUE was higher in 60% of the OF, the same in 37% and lower in only 3%. The NUE of crop production in OF was 91% (arable farms: 83%; mixed/dairy farms: 95%) and the NUE in CF was 79% (arable farms: 77%; dairy farms: 80%). N balance was lower in 90% of the OF. The yearly average N balance was four times higher in CF (59 kg N ha−1 a−1) than in OF (15 kg N ha−1 a−1). The results show a huge individual variability within OF and CF. Organic mixed/dairy farms had the lowest N balances and the highest NUE. A further expansion of OF area can help to reduce high N balances and increase the NUE of crop production.


Sign in / Sign up

Export Citation Format

Share Document