sma spring
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 30)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 29 (3) ◽  
pp. 1-34
Author(s):  
Moritz Alexander Messerschmidt ◽  
Sachith Muthukumarana ◽  
Nur Al-Huda Hamdan ◽  
Adrian Wagner ◽  
Haimo Zhang ◽  
...  

We present ANISMA, a software and hardware toolkit to prototype on-skin haptic devices that generate skin deformation stimuli like pressure, stretch, and motion using shape-memory alloys (SMAs). Our toolkit embeds expert knowledge that makes SMA spring actuators more accessible to human–computer interaction (HCI) researchers. Using our software tool, users can design different actuator layouts, program their spatio-temporal actuation and preview the resulting deformation behavior to verify a design at an early stage. Our toolkit allows exporting the actuator layout and 3D printing it directly on skin adhesive. To test different actuation sequences on the skin, a user can connect the SMA actuators to our customized driver board and reprogram them using our visual programming interface. We report a technical analysis, verify the perceptibility of essential ANISMA skin deformation devices with 8 participants, and evaluate ANISMA regarding its usability and supported creativity with 12 HCI researchers in a creative design task.


2022 ◽  
Author(s):  
Renan S. Geronel ◽  
Douglas Bueno ◽  
Ruxandra M. Botez

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5905
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak

Vibration suppression, as well as its generation, is a common subject of scientific investigations. More and more often, but still rarely, shape memory alloys (SMAs) are used in vibrating systems, despite the fact that SMA springs have many advantages. This is due to the difficulty of the mathematical description and the considerable effortfulness of analysing and synthesising vibrating systems. The article shows the analysis of vibrating systems in which spring elements made of SMAs are used. The modelling and analysis method of vibrating systems is shown in the example of a vibrating system with a dynamic vibration absorber (DVA), which uses springs made of a shape memory alloy. The formulated mathematical model of a 2-DOF system with a controlled spring, mounted in DVA suspension, uses the viscoelastic model of the SMA spring. For the object, a control system was synthesised. Finally, model tests with and without a controller were carried out. The characteristics of the vibrations’ transmissibility functions for both systems were determined. It was shown that the developed DVA can tune to frequency excitation changes of up to ±10%.


2021 ◽  
pp. 788-800
Author(s):  
Binghang Xiao ◽  
Jianzhe Huang ◽  
Wuji Liu ◽  
Yajun Teng ◽  
Lingfeng Qiao ◽  
...  

2021 ◽  
Author(s):  
Qiwei Zhang ◽  
Jian Xu ◽  
Hongbin Fang

Abstract Inspired by the biological characteristics of the earthworm and the prominent deformability of origami structure, this research proposes an origami-based earthworm-like robot to achieve effective planar locomotion. Origami is attractive for building earthworm-like robots’ ‘body’ because it can exhibit excellent compliance and reduce the cost of fabrication. In this paper, we choose Yoshimura structure incorporated with hybrid actuators and anchoring mechanisms to construct the robot segment. The Yoshimura structure is composed of multiple layers and each layer is assumed to have uniform deformation. Kinematic analysis indicates that the Yoshimura structure has excellent axial and bending deformability, and the deformability is closely related to the number of layers. To control the axial and bending deformation of the robot segment individually, each segment contains two types of actuators: pneumatic balloon and SMA spring. The balloon is used to actuate the expansion and contraction of the segment, while the SMA spring is used to actuate the bending behavior of the segment. The experiment is performed to verify that the robot can achieve rectilinear and planar locomotion. Our results could lead to the development of origami-based locomotion robots and deepen our understanding of them.


2021 ◽  
pp. 136943322110339
Author(s):  
Sasa Cao ◽  
Jiang Yi

This study introduces a shape memory alloy (SMA)-spring damper which is composed of SMA bars and elastic springs arranged in perpendicular. The damper depicts a curved flag-shape hysteretic behavior that is endowed with self-centering capacities and large deformation capabilities but uses reduced amount of SMA material. A design procedure is proposed to apply the SMA-spring damper to the bridge with laminated rubber bearings which would slide under seismic excitations. Analytical results validate the effectiveness of SMA-spring dampers in seismic control of the bridge: (1) The damper provides trivial stiffness to the bridge at small displacement, and the isolation efficiency of the bridge is maintained; (2) large horizontal force is provided for the structures at large deformation of the bearings, which alleviates the excessive displacement of bearings and prevents span collapse; and (3) the damper helps recenter the bearings and reduce the residual displacement of the bridge.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


Sign in / Sign up

Export Citation Format

Share Document