soft actuators
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 371)

H-INDEX

41
(FIVE YEARS 14)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 520
Author(s):  
Johannes Mersch ◽  
Najmeh Keshtkar ◽  
Henriette Grellmann ◽  
Carlos Alberto Gomez Cuaran ◽  
Mathis Bruns ◽  
...  

Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary. In this work, a soft actuator is presented that incorporates fiber-based actuators and sensors to monitor both deformation and temperature. The soft actuator showed considerable deformation around two solid body joints, which was then compared to the sensor signals, and their correlation was analyzed. Both, the actuator as well as the sensor materials were processed by braiding and tailored fiber placement before molding with silicone rubber. Finally, the novel fiber-rubber composite material was used to implement closed-loop control of the actuator with a maximum error of 0.5°.


2022 ◽  
Author(s):  
Keita Kaneko ◽  
Kenjiro Takemura

Abstract Soft robots have advantages in terms of safety, softness, and compliance compared to traditional robotic systems. However, fluid-driven soft actuators, often employed in soft robots, require a corresponding number of bulky pressure supplies/valves to drive. Here, we consider a valve that can control the flow without mechanical moving parts for simplifying the driving system of soft actuators. We developed a system comprising a pump, a switching valve, and two latex balloons to demonstrate the feasibility of introducing a fluid valve into soft robotics. As the valve, which makes use of the Coanda effect, can switch the flow between two outlets when the pressure difference between the outlets is 3 kPa, we employed a latex balloon connected to each outlet. The system can control the expansion of each balloon by switching the flow from the pump. The experimental results proved that the system could actuate each balloon.


Robotica ◽  
2022 ◽  
pp. 1-15
Author(s):  
Zhaoyu Liu ◽  
Yuxuan Wang ◽  
Jiangbei Wang ◽  
Yanqiong Fei ◽  
Qitong Du

Abstract The aim of this work is to design and model a novel modular bionic soft robot for crawling and crossing obstacles. The modular bionic soft robot is composed of several serial driving soft modules, each module is composed of two parallel soft actuators. By analyzing the influence of working pressure and manufacturing size on the stiffness of the modular bionic soft robot, the nonlinear variable stiffness model of the modular bionic soft robot is established. Based on this model, the spatial states and design parameters of the modular bionic soft robot are discussed when the modular bionic soft robot can pass through the obstacle. Experiments show that when the inflation air pressure of the modular bionic soft robot is 70 kPa, its speed can reach 7.89 mm/s and the height of obstacles passed by it can reach 42.8 mm. The feasibility of the proposed modular bionic soft robot and nonlinear variable stiffness model is verified by locomotion experiments.


2022 ◽  
Vol 8 ◽  
Author(s):  
Joseph Ashby ◽  
Samuel Rosset ◽  
E.-F. Markus Henke ◽  
Iain A. Anderson

Soft robots, devices with deformable bodies and powered by soft actuators, may fill a hitherto unexplored niche in outer space. All space-bound payloads are heavily limited in terms of mass and volume, due to the cost of launch and the size of spacecraft. Being constructed from stretchable materials allows many possibilities for compacting soft robots for launch and later deploying into a much larger volume, through folding, rolling, and inflation. This morphability can also be beneficial for adapting to operation in different environments, providing versatility, and robustness. To be truly soft, a robot must be powered by soft actuators. Dielectric elastomer transducers (DETs) offer many advantages as artificial muscles. They are lightweight, have a high work density, and are capable of artificial proprioception. Taking inspiration from nature, in particular the starfish podia, we present here bio-inspired inflatable DET actuators powering low-mass robots capable of performing complex motion that can be compacted to a fraction of their operating size.


Author(s):  
Zakai Olsen ◽  
Kwang Jin Kim

Abstract As the field of soft robotics grows and new applications for this technology are discovered, the use of simplified models for the soft actuators found in these devices will be critical. In this study we explore arguments based on the magnitude of field gradients that arise in the ionic polymer-metal composite under large applied voltages and their use for approximating measures of the fields inside the polymer. Using the order-of-magnitude based arguments provides exceptional results for quantifying the field measures of maximum ionic concentration and electric potential within the bulk of the polymer. These measures are leveraged to reconstruct the fields themselves in such a way that the internal bending moments generated inside the actuator may be approximated. With the internal moments, a simplified kinematic model may be used to formulate the steady-state actuator response of the IPMC. This actuator model shows a great deal of accuracy as compared to a full multiphysics model, and we discuss the prospects for future development of this model to account for dynamic actuation.


2022 ◽  
pp. 339-353
Author(s):  
Elango Natarajan ◽  
Muhammad Rusydi Muhammad Razif ◽  
AAM Faudzi ◽  
Palanikumar K.

Soft actuators are generally built to achieve extension, contraction, curling, or bending motions needed for robotic or medical applications. It is prepared with a cylindrical tube, braided with fibers that restrict the radial motion and produce the extension, contraction, or bending. The actuation is achieved through the input of compressed air with a different pressure. The stiffness of the materials controls the magnitude of the actuation. In the present study, Silastic-P1 silicone RTV and multi-wall carbon nanotubes (MWCNT) with reinforced silicone are considered for the evaluation. The dumbbell samples are prepared from both materials as per ASTM D412-06a (ISO 37) standard and their corresponding tensile strength, elongation at break, and tensile modulus are measured. The Ogden nonlinear material constants of respective materials are estimated and used further in the finite element analysis of extension, contraction, and bending soft actuators. It is observed that silicone RTV is better in high strain and fast response, whereas, silicone/MWCNT is better at achieving high actuation.


Automation ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-26
Author(s):  
Marcela Lopez ◽  
Mahdi Haghshenas-Jaryani

This paper presents the concept of muscle-driven locomotion for planar snake robots, which combines the advantages of both rigid and soft robotic approaches to enhance the performance of snake robot locomotion. For this purpose, two adjacent links are connected by a pair of pneumatic artificial muscles wherein an alternate actuation of these soft actuators causes a rotational motion at the connecting joints. The muscle-based actuated linkage mechanism, as a closed six-linkage mechanism, was designed and prototyped. The linear motion and force generation of the pneumatic artificial muscle was experimentally characterized using isotonic and isometric contraction experiments. A predictive model was developed based on the experimental data to describe the relationship between the force–length–pressure of the PAMs. Additionally, the muscle-driven mechanism was kinematically and dynamically characterized based on both theoretical and experimental studies. The experimental data generally agreed with our model’s results and the generated joint angle and torque were comparable to the current snake-like robots. A skx-link planar snake robot with five joints, five pairs of antagonistic muscles, and an associated pneumatic controller was prototyped and examined for simple movements on a straight-line. We demonstrated the muscle-driven locomotion of the six-link snake robot, and the results show the feasibility of using the proposed mechanism for future explorations of snake robot locomotion.


Author(s):  
Changyu Xu ◽  
Zilin Yang ◽  
Shaun Wee Kiat Tan ◽  
Jianhuang Li ◽  
Guo Zhan Lum

Magnetic miniature robots (MMRs) are mobile actuators that can exploit their size to non-invasively access highly confined, enclosed spaces. By leveraging on such unique abilities, MMRs have great prospects to transform robotics, biomedicine and materials science. As having high dexterity is critical for MMRs to enable their targeted applications, existing MMRs have developed numerous soft-bodied gaits to locomote in various environments. However, there exist two critical limitations that have severely restricted their dexterity: (i) MMRs capable of multimodal soft-bodied locomotion have only demonstrated five-degrees-of-freedom (five-DOF) motions because the sixth-DOF rotation about their net magnetic moment axis is uncontrollable; (ii) six-DOF MMRs have only realized one mode of soft-bodied, swimming locomotion. Here we propose a six-DOF MMR that can execute seven modes of soft-bodied locomotion and perform 3-dimensional pick-and-place operations. By optimizing its harmonic magnetization profile, our MMR can produce 1.41-63.9 folds larger sixth-DOF torque than existing MMRs with similar profiles, without compromising their traditional five-DOF actuation capabilities. The proposed MMR demonstrated unprecedented dexterity; it could jump through narrow slots to reach higher grounds; use precise orientation control to roll, two-anchor crawl and swim across tight openings with strict shape constraints; perform undulating crawling across three different planes in convoluted channels. Keywords: Magnetic materials; soft actuators; miniature robots; locomotion. Corresponding author(s) Email:   [email protected]  


Sign in / Sign up

Export Citation Format

Share Document