grapevine moth
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Samuel Reis ◽  
Joana Martins ◽  
Fátima Gonçalves ◽  
Cristina Carlos ◽  
João A. Santos

The European grapevine moth (Lobesia botrana; Denis and Schiffermüller, 1775) is considered a key pest for grapevine (Vitis vinifera L.) in the Douro Region, Portugal. The phenology of both the grapevine and the pest has changed in the last decades due to the increase in temperature. Here, we assess the potential impact of climate change on the (a)synchrony of both species. The results show that the phenological stages (budburst, flowering and veraison) undergo an advancement throughout the region (at an ~1 km resolution) under a climate change scenario (Representative Concentration Pathways, RCP8.5) for the period 2051–2080, with respect to the historic period (1989–2015). For cv. Touriga Nacional and Touriga Franca, the budburst advances up to 14 days, whereas for flowering and veraison the advancements are up to 10 days (mainly at low elevations along the Douro River). For the phenology of Lobesia botrana, earliness was also verified in the three flights (consequently there may be more generations per year), covering the entire region. Furthermore, the third flight advances further compared to the others. For both varieties, the interaction between the third flight (beginning and peak) and the veraison date is the most relevant modification under the future climate change scenario (RCP8.5, 2051–2080). The aforementioned outcomes from the phenology models help to better understand the possible shifts of both trophic levels in the region under future climate, giving insights into their future interactions.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1033
Author(s):  
Ignacio Vicente-Díez ◽  
Rubén Blanco-Pérez ◽  
Maryam Chelkha ◽  
Miguel Puelles ◽  
Alicia Pou ◽  
...  

The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are well-known virulent agents against arthropod pests thanks to symbiotic bacteria in the genera Xenorhabdus and Photorhabdus (respectively) that produce natural products with insecticidal potential. Novel technological advances allow field applications of EPNs and those bioactive compounds as powerful bio-tools against aerial insect pests. This study aimed to determine the viability of four EPN species (Steinernema feltiae, S. carpocapsae, S. riojaense, and Heterorhabditis bacteriophora) as biological control agents against EGVM larval instars (L1, L3, and L5) and pupae. Additionally, the bioactive compounds from their four symbiotic bacteria (Xenorhabdus bovienii, X. nematophila, X. kozodoii, and Photorhabdus laumondii subsp. laumondii, respectively) were tested as unfiltered ferment (UF) and cell-free supernatant (CFS) against the EGVM larval instars L1 and L3. All of the EPN species showed the capability of killing EGVM during the larval and pupal stages, particularly S. carpocapsae (mortalities of ~50% for L1 and >75% for L3 and L5 in only two days), followed by efficacy by S. feltiae. Similarly, the bacterial bioactive compounds produced higher larval mortality at three days against L1 (>90%) than L3 (~50%), making the application of UF more virulent than the application of CFS. Our findings indicate that both steinernematid species and their symbiotic bacterial bioactive compounds could be considered for a novel agro-technological approach to control L. botrana in vineyards. Further research into co-formulation with adjuvants is required to expand their viability when implemented for aboveground grapevine application.


2021 ◽  
Vol 6 (72) ◽  
pp. 263-276
Author(s):  
Oleg Valerievich Orlov ◽  
◽  
Evgenia Georgievna Yurchenko ◽  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Evangelos Beris ◽  
Elias Korkas

Abstract Background The European grapevine moth, Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae) is currently the most damaging pest in many viticultural regions across the Mediterranean basin and elsewhere. Its feeding activity also enhances the development of secondary infections by Botrytis cinerea - and other fungi - to wine grapes. The gram-positive bacterium Bacillus thuringiensis (Bt) has been reported to partially control larval populations of L. botrana, while it requires to be digested by the insect to cause infection. Entomopathogenic fungi (EPF) are possibly capable of acting synergistically with Bt to increase its efficacy against insect pests. Results The hypothesis of synergy or antagonism between Bt and EPF for the control of L. botrana was tested in two bioassays: A) Insects fed on Bt diet and subsequently some groups were sprayed by conidia of Beauveria bassiana or Paecilomyces fumosoroseus, and B) Grapes were sprayed by Bt, or B. bassiana, or combination of the two, and then untreated insects were placed to feed on the grapes. In both bioassays, combination treatments performed better than single treatments, indicating additive action or synergy. The Bt and B. bassiana combination treatment (Bt diet for 30 h and then sprayed with conidia of B. bassiana) resulted in 91% larval mortality while the single Bt and B. bassiana treatments caused 28% and 34% mortality respectively. Such results indicated synergism. Combination treatment on grapes also caused significantly higher mortality on L. botrana larvae, compared to single treatments. The median lethal time (LT50) was estimated as 8.43 days for the single Bt treatment, 7.87 days for the single B. bassiana treatment and 6.3 days for the combination Bt + B. bassiana treatment. Conclusions Absence of antagonism as well as additive action or synergy were indicated by the results. Larval populations of the pest can be effectively controlled by using microbial biocontrol agents. Further research is needed to investigate the biotic and abiotic factors that affect interactions between insect hosts and entomopathogenic organisms. However, the entomopathogens used in the present study showed remarkable action and may be included parallelly in control strategies against vineyard pests.


OENO One ◽  
2021 ◽  
Vol 55 (2) ◽  
pp. 335-351
Author(s):  
Samuel Reis ◽  
Joana Martins ◽  
Fátima Gonçalves ◽  
Cristina Carlos ◽  
João A. Santos

The European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) is considered to be the main pest in the vineyards of the Douro Demarcated Region (DDR) due to the economic losses it can cause. Damage is caused by the larvae of this pest feeding on grape clusters, rendering them susceptible to Botrytis cinerea in mid-season and leading to the development of primary and secondary rot at harvest. Understanding this pest´s behaviour in the region under future climate scenarios is an increasing challenge. Hence, the present study aims to assess the potential effects of two likely climate change scenarios (Representative Concentration Pathways, RCP4.5 and RCP8.5) on Lobesia botrana phenology, particularly at the beginning and at the peak of the three Lobesia botrana flights. Our findings show that the phenological events generally occur earlier in all locations and mostly during the long-term period of 2021–2080, being 7 to 12 days in advance in the RCP4.5 scenario, and 15 to 24 days in advance in RCP8.5, when compared to current values (2000–2019) and regardless of the flight number. These results suggest that a fourth complete flight is likely in the future, and that Lobesia botrana will become a tetravoltine species in the region. The flight (male catches) and infestation of Lobesia botrana over periods with daily temperatures above its upper limit of development (> 33 °C) were also analysed during the period 2000–2019 in the targeted sites. The upward trend in the number of days with maximum temperature above 33 °C tended to be accompanied by a decrease in the total number of male catches during the second and third flights, as well as a decrease in the percentage of attacked bunches by the second and third generations. Overall, climate change is expected to influence the phenology of this pest in the DDR.


Author(s):  
Corentin Iltis ◽  
Jérôme Moreau ◽  
Guillaume Gamb ◽  
Corentin Manière ◽  
Céline Boidin-Wichlacz ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 378
Author(s):  
Gregory. S. Simmons ◽  
Melissa Cristal Salazar Sepulveda ◽  
Edith Alejandra Fuentes Barrios ◽  
Marcela Idalsoaga Villegas ◽  
Raul Enrique Medina Jimenez ◽  
...  

The European grapevine moth, a Palearctic pest, was first detected in the Americas in 2008. Its establishment in Chile presented production and export issues for grapes and other fruits, and a national control campaign was launched. Urban areas next to agricultural production areas were recognized as a challenge for effective control. In 2015, a SIT laboratory was established in Arica, Chile to evaluate its potential for urban control. Progress included the development and evaluation of artificial diets, a mass-rearing of 75,000 moths/week, confirmation of 150 Gy as an operational dose for inherited sterility, and releases of sterile moths in a 25 ha urban area next to fruit production areas. Season-long releases demonstrated that high overflooding ratios were achieved early in the season but decreased with a large increase in the wild moth population. Sterile moth quality was consistently high, and moths were observed living in the field up to 10 days and dispersing up to 800 m. Recommendations for further development of the SIT include conducting cage and field studies to evaluate overflooding ratios and mating competitiveness, measuring of infestation densities in release and no-release areas, and conducting trials to evaluate combining SIT with compatible integrated pest management (IPM) tactics such as fruit stripping and use of mating disruption.


2021 ◽  
Author(s):  
Andrea Lucchi ◽  
Pier Luigi Scaramozzino

Abstract Lobesia botrana should be regarded as a potentially serious pest on a worldwide scale for all the vine-growing areas that are presently unaffected. L. botrana could be introduced as larvae or pupae on infested propagation material from the Old World and Latin America (Chile and Argentina) and especially on imported table grapes for consumption. It could also be introduced through the movement of unsanitized machinery. Thus L. botrana must have a strict quarantine status in all countries still unaffected.


Author(s):  
Bao-Jian Ding ◽  
Yi-Han Xia ◽  
Hong-Lei Wang ◽  
Fredrik Andersson ◽  
Erik Hedenström ◽  
...  

AbstractThe European grapevine moth, Lobesia botrana, uses (E,Z)-7,9-dodecadienyl acetate as its major sex pheromone component. Through in vivo labeling experiments we demonstrated that the doubly unsaturated pheromone component is produced by ∆11 desaturation of tetradecanoic acid, followed by chain shortening of (Z)-11-tetradecenoic acid to (Z)-9-dodecenoic acid, and subsequently introduction of the second double bond by an unknown ∆7 desaturase, before final reduction and acetylation. By sequencing and analyzing the transcriptome of female pheromone glands of L. botrana, we obtained 41 candidate genes that may be involved in sex pheromone production, including the genes encoding 17 fatty acyl desaturases, 13 fatty acyl reductases, 1 fatty acid synthase, 3 acyl-CoA oxidases, 1 acetyl-CoA carboxylase, 4 fatty acid transport proteins and 2 acyl-CoA binding proteins. A functional assay of desaturase and acyl-CoA oxidase gene candidates in yeast and insect cell (Sf9) heterologous expression systems revealed that Lbo_PPTQ encodes a ∆11 desaturase producing (Z)-11-tetradecenoic acid from tetradecanoic acid. Further, Lbo_31670 and Lbo_49602 encode two acyl-CoA oxidases that may produce (Z)-9-dodecenoic acid by chain shortening (Z)-11-tetradecenoic acid. The gene encoding the enzyme introducing the E7 double bond into (Z)-9-dodecenoic acid remains elusive even though we assayed 17 candidate desaturases in the two heterologous systems.


2021 ◽  
Author(s):  
Léonard Schneider ◽  
Valentin Comte ◽  
Baptiste Sneiders ◽  
Martine Rebetez

<p>Global warming increases the need for local climatic studies in wine-producing areas. Winegrowers have to develop strategies to adapt their activities to new climatic conditions and to their various effects on vine culture. Among them, distribution and population dynamics of pest species are likely to change. New species could reach the temperate regions, and some native species could create more damages than previously in the vineyards. In Western Europe, the distribution of the American grapevine leafhopper Scaphoideus titanus has been observed to shift northwards during the last decades (Boudon and Maixner 2007). Plurivoltin species such as the European grapevine moth Lobesia botrana could produce more generations per year (Gutierrez et al. 2018), creating potentially more damages on grapes. To help winegrowers, it is crucial to lead research at local scale, taking into account microclimatic specificities of the vineyards (Mozell and Thach 2014).</p><p> </p><p>In this study, we examine temperature trends during the growing season in the region of Neuchatel and their potential impacts on major vine pest species. We focus on the American grapevine leafhopper and on the European grapevine moth. The American grapevine leafhopper is already established in the Lake Geneva area and could soon reach the Neuchatel area, while the European grapevine moth is already present in the Neuchatel vineyard. We use temperature data over the last 40 years (1980-2019) and two climatic scenarios to assess present suitability for pest development and the perspectives for the next decades.</p><p> </p><p> </p><p>REFERENCES</p><p>Boudon, E. & M. Maixner. 2007. Potential effects of climate change on distribution and activity of insect vectors of grapevine pathogens. In International and multi-disciplinary" Global warming, which potential impacts on the vineyards?".</p><p>Gutierrez, A. P., L. Ponti, G. Gilioli & J. Baumgärtner (2018) Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agricultural and Forest Entomology, 20<strong>,</strong> 255-271.</p><p>Mozell, M. R. & L. Thach (2014) The impact of climate change on the global wine industry: Challenges & solutions. Wine Economics and Policy, 3<strong>,</strong> 81-89.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document