membrane progesterone receptor alpha
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. E. Redei ◽  
J. D. Ciolino ◽  
S. L. Wert ◽  
A. Yang ◽  
S. Kim ◽  
...  

AbstractMajor depressive disorder (MDD) is more common in women than in men, and evidence of gender-related subtypes of depression is emerging. Previously identified blood-based transcriptomic biomarkers distinguished male and female subjects with MDD from those without the disorder. In the present pilot study, we investigated the performance of these biomarkers in pregnant and postpartum women with prior major depressive episodes, some of whom had current symptomatology. The symptom scores of 13 pregnant and 15 postpartum women were identified by the Inventory of Depressive Symptoms (IDS-SR-30) at the time of blood sampling. Blood levels of the 20 transcriptomic biomarkers and that of estrogen receptor 2 (ESR2), membrane progesterone receptor alpha and beta (mPRα, mPRβ) were measured. In pregnant women, transcript levels of ADCY3, ASAH1, ATP11C, CDR2, ESR2, FAM46A, mPRβ, NAGA, RAPH1, TLR7, and ZNF291/SCAPER showed significant association with IDS-SR-30 scores, of which ADCY3, FAM46A, RAPH1, and TLR7 were identified in previous studies for their diagnostic potential for major depression. ASAH1 and ATP11C were previously also identified as potential markers of treatment efficacy. In postpartum women, transcript levels of CAT, CD59, and RAPH1 demonstrated a trend of association with IDS-SR-30 scores. Transcript levels of ADCY3, ATP11C, FAM46A, RAPH1, and ZNF291/SCAPER correlated with ESR2 and mPRβ expressions in pregnant women, whereas these associations only existed for mPRβ in postpartum women. These results suggest that a blood biomarker panel can identify depression symptomatology in pregnant women and that expression of these biomarker genes are affected by estrogen and/or progesterone binding differently during pregnancy and postpartum.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yefei Pang ◽  
Peter Thomas

Abstract Progesterone (P4) exerts multiple beneficial effects on the human cardiovascular system through its actions on vascular endothelial cells and also by acting directly on vascular smooth muscle cells (VSMCs). Membrane progesterone receptor alpha (mPRα) has been shown to mediate the rapid P4-induction of human VSMC relaxation through activation of MAPK, Akt/Pi3k and RhoA/ROCK signaling pathways and the resulting reduction of calcium influx through calcium channels. In this study, we demonstrate that treatment of cultured human VSMCs with P4 for 1-2 hours increases both the mRNA and protein expression of sarco/endoplasmic reticulum Ca- ATPase (SERCA), the major transporter of calcium from the cytosol into the sarcoplasmic reticulum (SR) during muscle relaxation. Knockdown of mPRα with siRNA completely blocked this stimulatory effect of P4 as well as that of OD 02-0, a mPR selective agonist, on SERCA protein expression. In contrast, expression levels of phospholamban (PLB), a SR protein that reversibly inhibits SERCA were downregulated by this P4 treatment, and mRNA expression of a channel that releases calcium from the SR, inositol trisphosphate receptor (IP3R), was unaltered after treatment with P4. Moreover, treatments with P4 and OD 02-0, but not with R5020, a nuclear PR agonist, increased PLB phosphorylation, which would result in disinhibition of SERCA function. P4 and OD 02-0 significantly increased calcium levels in the SR detected with Fluo-5N, a specific SR calcium indicator, and caused VSMC relaxation. These effects were blocked by cyclopiazonic acid (CPA, a SERCA inhibitor), suggesting that SERCA plays a critical role in P4 induction of VSMC relaxation. Similarly, the effects of P4 and OD 02-0 on relaxation of umbilical artery rings measured with a myograph were significantly attenuated by CPA, which confirms the critical role of SERCA in the rapid action of P4 and 02-0 on vascular muscle relaxation. P4 has previously been shown to activate MAPK and Akt signaling pathways to induce VSMC relaxation. The P4- and OD 02-0-induced increases in calcium in the SR were blocked by MAPK and Akt/Pi3k signaling inhibitors, AZD6244 and wortmannin. Taken together, these results suggest that the direct, rapid effects of P4 on relaxation of VSMCs through mPRα involves regulation of the expression and function of the SR proteins SERCA and PLB through MAPK and Akt signaling pathways.


2018 ◽  
Vol 477 ◽  
pp. 81-89 ◽  
Author(s):  
Juan Carlos González-Orozco ◽  
Valeria Hansberg-Pastor ◽  
Paulina Valadez-Cosmes ◽  
Walter Nicolas-Ortega ◽  
Yenifer Bastida-Beristain ◽  
...  

2014 ◽  
Vol 224 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Jing Lu ◽  
Joshua Reese ◽  
Ying Zhou ◽  
Emmet Hirsch

Parturition is an inflammatory process mediated to a significant extent by macrophages. Progesterone (P4) maintains uterine quiescence in pregnancy, and a proposed functional withdrawal of P4 classically regulated by nuclear progesterone receptors (nPRs) leads to labor. P4 can affect the functions of macrophages despite the reported lack of expression of nPRs in these immune cells. Therefore, in this study we investigated the effects of the activation of the putative membrane-associated PR on the function of macrophages (a key cell for parturition) and discuss the implications of these findings for pregnancy and parturition. In murine macrophage cells (RAW 264.7), activation of mPRs by P4 modified to be active only extracellularly by conjugation to BSA (P4BSA, 1.0×10−7 mol/l) caused a pro-inflammatory shift in the mRNA expression profile, with significant upregulation of the expression of cyclooxygenase 2 (COX2 (Ptgs2)), Il1B, and Tnf and downregulation of membrane progesterone receptor alpha (Paqr7) and oxytocin receptor (Oxtr). Pretreatment with PD98059, a MEK1/2 inhibitor, significantly reduced P4BSA-induced expression of mRNA of Il1B, Tnf, and Ptgs2. Inhibition of protein kinase A (PKA) by H89 blocked P4BSA-induced expression of Il1B and Tnf mRNA. P4BSA induced rapid phosphorylation of MEK1/2 and CREB (a downstream target of PKA). This phosphorylation was inhibited by pretreatment with PD98059 and H89, respectively, revealing that MEK1/2 and PKA are two of the components involved in mPR signaling. Taken together, these results indicate that changes in membrane progesterone receptor alpha expression and signaling in macrophages are associated with the inflammatory responses; and that these changes might contribute to the functional withdrawal of P4 related to labor.


2013 ◽  
Vol 78 (3) ◽  
pp. 236-243 ◽  
Author(s):  
O. V. Lisanova ◽  
T. A. Shchelkunova ◽  
I. A. Morozov ◽  
P. M. Rubtsov ◽  
I. S. Levina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document