physical processing
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 37)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 398
Author(s):  
Pieter Kempeneers ◽  
Tomas Kliment ◽  
Luca Marletta ◽  
Pierre Soille

This paper is on the optimization of computing resources to process geospatial image data in a cloud computing infrastructure. Parallelization was tested by combining two different strategies: image tiling and multi-threading. The objective here was to get insight on the optimal use of available processing resources in order to minimize the processing time. Maximum speedup was obtained when combining tiling and multi-threading techniques. Both techniques are complementary, but a trade-off also exists. Speedup is improved with tiling, as parts of the image can run in parallel. But reading part of the image introduces an overhead and increases the relative part of the program that can only run in serial. This limits speedup that can be achieved via multi-threading. The optimal strategy of tiling and multi-threading that maximizes speedup depends on the scale of the application (global or local processing area), the implementation of the algorithm (processing libraries), and on the available computing resources (amount of memory and cores). A medium-sized virtual server that has been obtained from a cloud service provider has rather limited computing resources. Tiling will not only improve speedup but can be necessary to reduce the memory footprint. However, a tiling scheme with many small tiles increases overhead and can introduce extra latency due to queued tiles that are waiting to be processed. In a high-throughput computing cluster with hundreds of physical processing cores, more tiles can be processed in parallel, and the optimal strategy will be different. A quantitative assessment of the speedup was performed in this study, based on a number of experiments for different computing environments. The potential and limitations of parallel processing by tiling and multi-threading were hereby assessed. Experiments were based on an implementation that relies on an application programming interface (API) abstracting any platform-specific details, such as those related to data access.


2021 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Kyriakos Syrmakezis ◽  
Konstantinos Tsakalakis ◽  
Ilias Sammas

The treatment of end-of-life printed circuit boards (EoL PCBs) presents a contemporary recycling challenge with significant environmental, economic and social dimensions. This reality has attracted interest in the development of sustainable treatment processes, founded on mineral processing and metallurgical processes. The present paper reviews the applications of mineral processes in the treatment of end-of-life printed circuit boards (magnetic, electromagnetic, gravity and flotation processes), highlighting their strengths, weaknesses and limitations in the processing of EoL PCBs.


Author(s):  
E A Petzel ◽  
S Acharya ◽  
J M Zeltwanger ◽  
E A Bailey ◽  
D W Brake

Abstract This study used 18 calves (295 ± 29 kg) and 18 yearlings (521 ± 29 kg) fed whole, cracked or steam-flaked corn (SFC) to evaluate nutrient digestion and energy balance across different types of processed corn and sizes of cattle. Cattle were fed a diet comprised of 75% corn (DM-basis) from whole, cracked or SFC to 2.5-times maintenance energy requirements. Subsequently, cattle were placed in individual stanchions and urine and feces was collected together with measures of gas production via indirect calorimetry. Data were analyzed using the MIXED procedure of SAS. There was no interaction of corn processing and cattle size (P ≥ 0.40). Time spent ruminating (min/d) and rumination rate (min/kg DM intake; DMI) was not affected by corn processing or cattle size. Eating rate (min/kg DMI) was faster (P < 0.01) for yearlings compared to calves. Total tract starch digestion was greatest (P = 0.01) for cattle fed SFC (97.5%), intermediate in cattle fed cracked (92.4%) and least in cattle fed whole corn (89.5%). Dietary digestible energy and metabolizable energy (Mcal/kg DMI) were greater (P ≤ 0.05) for cattle fed SFC compared to cracked or whole. A greater proportion of digestible energy was lost to heat production (P = 0.01) in cattle fed whole corn compared to cracked and tended to be greater (P = 0.08) in cattle fed SFC than cracked. Conversion of digestible energy to metabolizable energy in this study was more closely related to a dynamic model used to estimate metabolizable energy of feeds to dairy cows than to a linear model used to predict metabolizable energy of feeds to beef cattle. If library estimates of net energy for maintenance are correct, then retained energy (Mcal/d) should have been similar between each type of processed corn; however, retained energy was greater (P < 0.01) for cattle fed cracked compared to whole corn and tended to be greater (P = 0.06) compared to SFC. Yet, observed amounts of net energy based on measures of retained energy were not different (P ≥ 0.60) between cracked and SFC. Nitrogen balance was not affected (P ≥ 0.30) by corn processing or cattle size, although cattle fed cracked had numerically greater (P ≤ 035) N retention. These data indicate that physical processing of corn provides greater net energy to cattle in comparison to whole corn.


Author(s):  
Madaraboina Venkateswara Rao ◽  
Sunil C. K. ◽  
Ashish Rawson ◽  
Chidanand D. V. ◽  
Venkatachlapathy N.

2021 ◽  
Vol 31 (12) ◽  
pp. 2150189
Author(s):  
Liping Hou ◽  
Han Bao ◽  
Quan Xu ◽  
Mo Chen ◽  
Bocheng Bao

Memristive synaptic weight is a changeable connection synaptic weight. It reflects the self-adaption physical processing in biological neurons. To study its dynamical effect, this paper presents a memristive synaptic weight-based tabu learning neuron model. It is constructed by replacing the resistive self-connection synaptic weight in the tabu learning neuron with a memristive self-connection synaptic weight. The equilibrium point of the memristive tabu learning model is time-varying and switches between no equilibrium state and line equilibrium state with the change of the external current. Particularly, the stability of the line equilibrium state closely relies on the initial state of the memristor, resulting in the emergence of coexisting infinitely many nonchaotic attractors. By employing the bifurcation plots, Lyapunov exponents, and phase plots, this paper numerically reveals the initial state-switched coexisting bifurcation behaviors and initial state-relied extreme multistability, and thereby discloses the coexisting infinitely many nonchaotic attractors composed of mono-periodic, multiperiodic, and quasi-periodic orbits. In addition, PSIM circuit simulations and printed-circuit board-based experiments are executed and the coexisting infinitely many nonchaotic attractors are realized physically. The results well verify the numerical simulations.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1501
Author(s):  
Wiesław Szulc ◽  
Beata Rutkowska ◽  
Stanisław Gawroński ◽  
Elżbieta Wszelaczyńska

With a rapidly increasing amount of waste, waste management is an extremely important issue. Utilising processes such as combustion and biological processing significantly decreases the accumulation and volume of waste. Despite this, huge volumes of resulting waste that still need to be managed remain. This paper identifies various methods of processing organic waste, discussing both thermal and biological techniques for waste management. Additionally, this paper demonstrates that the end products remaining after processing waste are oftentimes functional for agricultural use. These materials are excellent byproducts used to produce various organic, mineral and organomineral fertilisers. For instance, it appears that the production of fertilisers is the most promising method of utilising fly ash that results from the combustion of waste. In order to minimise the environmental risk of polluting soil with heavy metals, waste, as well as ashes resulting from combustion, must meet the criteria for the limit of contaminants.


Author(s):  
Janine Waletzko-Hellwig ◽  
Christopher Pohl ◽  
Janik Riese ◽  
Michael Schlosser ◽  
Michael Dau ◽  
...  

The reconstruction of critical size bone defects is still clinically challenging. Even though the transplantation of autologous bone is used as gold standard, this therapy is accompanied by donor site morbidities as well as tissue limitations. The alternatively used allografts, which are devitalized due to thermal, chemical or physical processing, often lose their matrix integrity and have diminished biomechanical properties. High Hydrostatic Pressure (HHP) may represent a gentle alternative to already existing methods since HHP treated human osteoblasts undergo cell death and HHP treated bone cylinders maintain their mechanical properties. The aim of this study was to determine the biological effects caused by HHP treatment regarding protein/matrix integrity and type of cell death in trabecular bone cylinders. Therefore, different pressure protocols (250 and 300 MPa for 10, 20 and 30 min) and end point analysis such as quantification of DNA-fragmentation, gene expression, SDS-PAGE, FESEM analysis and histological staining were performed. While both protein and matrix integrity was preserved, molecular biological methods showed an apoptotic differentiation of cell death for lower pressures and shorter applications (250 MPa for 10 and 20 min) and necrotic differentiation for higher pressures and longer applications (300 MPa for 30 min). This study serves as a basis for further investigation as it shows that HHP successfully devitalizes trabecular bone cylinders.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 106-106
Author(s):  
George C Fahey

Abstract The fiber component of the diet is the major food source for the intestinal microbiota of swine. Included are traditional insoluble (e.g., cellulose) and soluble (e.g., pectin) dietary fibers, resistant starches (four types), and oligosaccharides (some of which are “prebiotics”). Fiber constituents are found both in the primary and secondary cell walls of plants, but some are found in non-cell wall structures as well. In cereals, cell walls consist of a reinforced multi-component matrix of cross-linked polymers (acidic xylans, arabinoxylans, glucomannans) in which a network of cellulose microfibrils is embedded. Proteins form a second network in the matrix, and lignin and phenolic acids may be covalently linked to the matrix polysaccharides. In addition, whole grains have considerable amounts of resistant starch. Physical processing and cooking have a major effect on the chemical composition and subsequent utilization of the whole grain. Techniques are available to quantify both the insoluble and soluble fibers present in swine diets. Solubility often impacts the location of fermentation within the swine gastrointestinal tract, and solubility often, but not always, reflects fermentation potential. Other important attributes of fiber include its viscosity/gel-forming capacity/water-holding capacity, and its fermentability. On the analytical front, considerable progress has been and continues to be made, with many AOAC-approved techniques currently available. In summary, dietary fiber is perhaps the most chemically complicated of any swine feed constituent, making its analysis difficult. Fibers, whether they be intrinsic and intact, isolated, chemically and (or) enzymatically synthesized, alternative, etc.represent the key foods for the swine intestinal microbiota, so a good understanding of their properties is critical to fully understand how to optimize their role in swine nutrition.


Sign in / Sign up

Export Citation Format

Share Document