dongxiang wild rice
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Author(s):  
YUANWEI FAN ◽  
Fantao Zhang ◽  
Jiankun Xie

Rice is one of the most important crops in the world and half of the world population consumes it as their staple food. The abiotic stresses caused by drought, salt and other stresses have severely impacted rice production. MicroRNAs (miRNAs) are a type of small non-coding RNAs which widely reported as gene regulators, suppressing genes expression by degradation mRNA or translation inhibition. Previously, high-throughput sequencing has found a conserved miRNA miR5505 responding to drought stress in Dongxiang wild rice (DXWR). Several other studies also revealed that miR5505 was involved in rice stress responses. We further studied the effect of miRNA in drought and salt tolerance by overexpression it in rice. 2 in 18 successfully transformed transgenic lines with higher miR5505 expression were selected and then drought and salt resistance ability were evaluated. Both transgenic lines showed stronger drought and salt tolerance than wild-type (WT). Putative targets of miR5505 were identified by psRNATarget and several of them were found stress-related. RNA-seq found 1,980 differentially expressed genes (DEGs) in transgenic lines. Among them, 978 genes were down-regulated. Three genes were predicted by psRNATarget and two of them might be stress-related. We also found various environmental stress cis-acting elements in upstream of miR5505 promoter through Software PlantCARE. In all, we improved rice drought and salt tolerance by overexpressing miR5505, and the generated putative targets and cis-acting elements also suggested miR5505 might play important roles in the regulation of drought and salt responses. Keywords: rice, overexpression line , drought and salt stress, miR5505


2022 ◽  
pp. 1-4
Author(s):  
Wanling Yang ◽  
Yuanwei Fan ◽  
Yong Chen ◽  
Gumu Ding ◽  
Hu Liu ◽  
...  

Abstract Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is the northernmost distributed wild rice found in the world. Similar to other populations of O. rufipogon, DXWR contains a large number of agronomically valuable genes, which makes it a natural gene pool for rice breeding. Molecular markers, especially simple repeat sequence (SSR) markers, play important roles in plant breeding. Although a large number of SSR markers have been developed, most of them are derived from the genome coding sequences, rarely from non-coding sequences. Meanwhile, long non-coding RNAs (lncRNAs), which are derived from the transcription of non-coding sequences, play vital roles in plant growth, development and stress responses. In our previous study, we obtained 1655 lncRNA transcripts from DXWR using strand-specific RNA sequencing. In this study, 1878 SSR loci were detected from the lncRNA sequences of DXWR, and 1258 lncRNA-derived-SSR markers were developed on the genome-wide scale. To verify the validity and applicability of these markers, 72 pairs of primers were randomly selected to test 44 rice accessions. The results showed that 42 (58.33%) pairs of primers have abundant polymorphism among these rice materials; the polymorphism information content values ranged from 0.04 to 0.87 with an average of 0.50; the genetic diversity index of SSR loci varied from 0.04 to 0.88 with an average of 0.56; and the number of alleles per marker ranged from 2 to 11 with an average of 4.36. Thus, we concluded that these lncRNA-derived-SSR markers are a very useful source for future basic and applied research.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Qianwen Deng ◽  
Liangfang Dai ◽  
Yaling Chen ◽  
Decai Wu ◽  
Yu Shen ◽  
...  

Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 665
Author(s):  
Zhibin Zhang ◽  
Tingting Liu ◽  
Xiao Zhang ◽  
Jing Xie ◽  
Ya Wang ◽  
...  

Dongxiang wild rice (Oryza rufipogon Griff.) germplasm is a precious resource for the improvement of agronomic traits in rice. Rice seeds also harbor a diverse endophytic bacterial community, and their interactions with their hosts and each other can influence plant growth and adaptability. Here, we investigated the community composition of cultivable endophytic bacteria obtained from the surface-sterilized seeds of Dongxiang wild rice and screened them for plant growth-promoting traits. Phylogenetic analysis of 16S rRNA gene sequences indicated that the 47 isolates were affiliated with five classes and 13 discrete genera, and Bacillus and Microbacterium predominated. Evaluations of plant growth promoting (PGP) traits showed that 45 endophytic bacteria isolates produced between 3.37 and 90.11 μg mL−1 of Indole-3-acetic acid (IAA), with the highest yield of 90.11 μg mL−1 (Fse28). Further, 37 of the isolates were able to solubilize mineral phosphate, while 28 other isolates had the ability of N2-fixation, 17 isolates possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity with the highest yield of 20.72 μmol mg−1 protein h−1 (Fse35), and 17 isolates were also able to produce siderophores. The two strains Fse28 and Fse35 had multiple PGP traits that significantly improved the agronomic traits (root length, shoot length, dry matter, and chlorophyll content) of cultivated rice seedlings. Our results illustrate the rich diversity of seed endophytic bacteria in Dongxiang wild rice and their potential for developing novel efficient bioinoculants to enhance soil fertility and favor seedling growth.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1831
Author(s):  
Minmin Zhao ◽  
Biaolin Hu ◽  
Yuanwei Fan ◽  
Gumu Ding ◽  
Wanling Yang ◽  
...  

Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) has strong seed storability and identifying its elite gene resources may facilitate genetic improvements in rice seed storability. In this study, we developed two backcross inbred lines (BILs) populations, with DXWR as a common donor parent and two rice varieties (F6 and R974) as recipient parents. Bulked segregant analysis via whole genome sequencing (BSA-seq) was used to identify seed storability-related loci in the DXWR and F6 population. Two main genomic regions containing 18,550,000–20,870,000 bp on chromosome 4 and 7,860,000–9,780,000 bp on chromosome 9 were identified as candidate loci of DXWR seed storability; these overlapped partially with seed storability-related quantitative trait loci (QTLs) discovered in previous studies, suggesting that these loci may provide important regions for isolating the responsible genes. In total, 448 annotated genes were predicted within the identified regions, of which 274 and 82 had nonsynonymous and frameshift mutations, respectively. We detected extensive metabolic activities and cellular processes during seed storability and confirmed the effects of the seed storability-related candidate loci using four BILs from DXWR and R974. These results may facilitate the cloning of DXWR seed storability-related genes, thereby elucidating rice seed storability and its improvement potential.


2021 ◽  
Author(s):  
Minmin Zhao ◽  
Biaolin Hu ◽  
Yuanwei Fan ◽  
Gumu Ding ◽  
Wanling Yang ◽  
...  

Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) has strong seed storability and identifying its elite gene resources may facilitate genetic improvements in rice seed storability. In this study, we developed two backcross inbred lines (BILs) populations, with DXWR as a common donor parent and two rice varieties (F6 and R974) as recipient parents. Bulked segregant analysis via whole genome sequencing (BSAseq) was used to identify seed storability related loci in the DXWR and F6 population. Two main genomic regions containing 18,550,000 to 20,870,000 bp on chromosome 4 and 7,860,000 to 9,780,000 bp on chromosome 9 were identified as candidate loci of DXWR seed storability; these overlapped partially with seed storability related quantitative trait loci (QTLs) discovered in previous studies, suggesting that these loci may provide important regions for isolating the responsible genes. In total, 448 annotated genes were predicted within the identified regions, of which 274 and 82 had nonsynonymous and frameshift mutations, respectively. We detected extensive metabolic activities and cellular processes during seed storability and confirmed the effects of the seed storability related candidate loci using four BILs from DXWR and R974. These results may facilitate the cloning of DXWR seed storability-related genes, thereby elucidating rice seed storability and its improvement potential.


2021 ◽  
Author(s):  
Yong Chen ◽  
Yuanwei Fan ◽  
Wanling Yang ◽  
Gumu Ding ◽  
Minmin Zhao ◽  
...  

PREMISE: Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is the northernmost common wild rice found in the world, which possesses abundant elite genetic resources. We developed a set of drought stress-responsive microRNA (miRNA)-based single sequence repeat (SSR) markers for DXWR, which will help breed drought stress-resistant rice varieties. METHODS AND RESULTS: Ninety-nine SSR markers were developed from the drought stress-responsive miRNAs of DXWR. The SSR loci were distributed in all 12 rice chromosomes and most were in chromosomes 2 and 6, with di- and trinucleotides being the most abundant repeat motifs. Nine out of ten synthesized SSR markers were displayed high levels of genetic diversity in the genomes of DXWR and 41 modern rice varieties worldwide. The number of alleles per locus ranged from 2 to 6, and the observed and expected heterozygosity ranged from 0.000 to 0.024 and 0.461 to 0.738, respectively. CONCLUSIONS: These SSR markers developed from drought stress-responsive miRNAs in DXWR could be additional tools for elite genes mapping and useful for drought stress-resistant rice breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaling Chen ◽  
Wenxue Huang ◽  
Fantao Zhang ◽  
Xiangdong Luo ◽  
Biaolin Hu ◽  
...  

Dongxiang common wild rice is a precious rice germplasm resource for the study and improvement of salt tolerance in rice.The metabolism profile of Dongxiang wild rice (DXWR) under salinity was determined by high performance liquid chromatography-mass spectrometry (HPLC-MS) to find differential metabolites and screen potential biomarkers for salt-tolerant rice varieties. A global untargeted metabolism analysis showed 4,878 metabolites accumulated in seedlings of Dongxiang wild rice. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) results provided a clear metabolism discrimination between DXWR under control and DXWR under salinity. A total of 90 metabolites were significantly changed (49 upregulated and 41 downregulated) under salinity, of which the largest increase was in DL-2-Aminoadipic acid (27.08-fold) and the largest decrease was in L-Carnitine (0.014-fold). Amino acids and nuclear glycosides were mainly upregulated, while carbohydrates and organic acids were mainly downregulated in the salt-treated group. Among the top 10 upregulated metabolites, five kinds of differential metabolites were amino acids. According to the survival rates of the seedlings under salinity, we selected three backcross inbred lines of DXWR with survival rates above 80% as salt-tolerant progenies (pro-DS) and three backcross inbred lines with survival rates below 10% as non-salt-tolerant progenies (pro-NDS) for an amino acid change analysis. This analysis found that the change in L-Asparagine (2.59-fold) was the biggest between pro-DS and pro-NDS under salinity, revealing that the contents of L-Asparagine may be one of the indices we can use to evaluate the salt tolerance of rice varieties.


Author(s):  
Wanling Yang ◽  
Yuanwei Fan ◽  
Yong Chen ◽  
Gumu Ding ◽  
Hu Liu ◽  
...  

AbstractDongxiang wild rice (Oryza rufipogon Griff., DXWR) is the northernmost distributed common wild rice found in the world. It contains a large number of agronomically valuable genes, which makes it a natural gene pool for rice breeding. Molecular markers, especially simple repeat sequence (SSR) markers, play important roles in crop breeding. Although a large number of SSR markers have been developed, most of them are derived from the genome coding sequences, rarely from non-coding sequences. Meanwhile, long non-coding RNAs (lncRNAs), which are derived from the transcription of non-coding sequences, play vital roles in plant growth, development and stress responses. In this study, 1878 SSR loci were detected from the lncRNA sequences of DXWR, and 1258 lncRNA-derived-SSR markers were developed on the genome-wide scale. To verify the validity and applicability of these markers, 72 pairs of primers were randomly selected to test 44 rice materials. The results showed that 42 (58.33%) pairs of primers have abundant polymorphism among these rice materials; the polymorphism information content (PIC) values ranged from 0.04 to 0.87 with an average of 0.50; the genetic diversity index of SSR loci varied from 0.04 to 0.88 with an average of 0.56; and the number of alleles per marker ranged from 2 to 11 with an average of 4.36. Thus, we concluded that these lncRNA-derived-SSR markers are a very useful source for future basic and applied research, including genetic diversity analysis, QTL mapping, and molecular breeding programs, to make good use of the elite lncRNA genes from DXWR.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Biao-lin Hu ◽  
Xia Li ◽  
Ting Wu ◽  
De-run Huang ◽  
Feng-lin Huang ◽  
...  

Mineral malnutrition as a prevalent public health issue can be alleviated by increasing the intake of dietary minerals from major staple crops, such as rice. Identification of the gene responsible for mineral contents in rice would help breed cultivars enriched with minerals through marker-assisted selection. Two segregating populations of backcross inbred lines (BIL) were employed to map quantitative trait loci (QTLs) for macronutrient contents in brown and milled rice, BC1F5, and BC2F4:5 derived from an interspecific cross of Xieqingzao B (Oryza sativa) and Dongxiang wild rice (O. rufipogon). Phenotyping the populations was conducted in multiple locations and years, and up to 169 DNA markers were used for the genotyping. A total of 17 QTLs for P, K, Na, Ca, and Mg contents in brown and milled rice distributed on eight regions were identified in the BC1F5 population, which is explained to range from 5.98% to 56.80% of phenotypic variances. Two regions controlling qCa1.1 and qCa4.1 were validated, and seven new QTLs for Ca and Mg contents were identified in the BC2F4:5 population. 18 of 24 QTLs were clustered across seven chromosomal regions, indicating that different mineral accumulation might be involved in common regulatory pathways. Of 24 QTLs identified in two populations, 16 having favorable alleles were derived from O. rufipogon and 10 were novel. These results will not only help understand the molecular mechanism of macronutrient accumulation in rice but also provide candidate QTLs for further gene cloning and grain nutrient improvement through QTL pyramiding.


Sign in / Sign up

Export Citation Format

Share Document