inhibitory spectrum
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yeongjin Yun ◽  
Sangjun Han ◽  
Yoon Sik Park ◽  
Hyunjae Park ◽  
Dogyeong Kim ◽  
...  

Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.


2021 ◽  
Vol 10 (37) ◽  
Author(s):  
Mengjiao Guo ◽  
Donghui Liu ◽  
Tongjie Chai

Bacillus subtilis BYS2 is a strain with a broad inhibitory spectrum against pathogenic bacteria. In the current study, we report the complete genome sequence of Bacillus subtilis BYS2. The chromosome of BYS2 (4,030,791 bp; G+C content, 43.88%) contained 3,914 protein-encoding genes, with 86 tRNAs, 30 rRNAs, and 5 noncoding RNAs (ncRNAs).


Author(s):  
Satoshi Kamimura ◽  
Kimiko Inoue ◽  
Eiji Mizutani ◽  
Jin-Moon Kim ◽  
Hiroki Inoue ◽  
...  

Abstract In mammalian cloning by somatic cell nuclear transfer (SCNT), treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives—such as trichostatin A—characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit Class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1 to 7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2 to 7.3%). Thus, inhibition of Class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8–10 h because longer inhibition with Class I inhibitors causes a 2-cell developmental block. Therefore, we used Ky-29, with higher selectivity for Class IIa than Class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the 2-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the 1-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.


2021 ◽  
Author(s):  
Adriana López-Arvizu ◽  
Diana Rocha-Mendoza ◽  
Amelia Farrés ◽  
Edith Ponce-Alquicira ◽  
Israel García-Cano

Abstract The gene encoding N-acetylmuramoyl-L-alanine amidase in Latilactobacillus sakei isolated from a fermented meat product was cloned in two forms: its complete sequence (AmiC) and without one of its anchoring LysM domains (AmiLysM4). Deletion of the LysM domain is believed to affect the target microorganism’s affinity to the cell wall, which influences antimicrobial activity. To compare activity and inhibitory spectra, AmiC and AmiLysM4 were expressed in Escherichia coli BL21. Using the zymography technique, two bands with lytic activity were observed, which were confirmed by LC-MS/MS analysis, with molecular masses of 71 kDa (AmiC) and 66 kDa (AmiLysM4). The recombinant proteins were active against Listeria innocua and Staphylococcus aureus strains; however, the inhibitory spectrum of AmiLysM4 was broader because AmiLysM4 could inhibit Leuconostoc mesenteroides and Weissella viridescens, which are microorganisms associated with food deterioration. Optimal temperature and pH values were determined for both proteins using L-alanine-p-nitroanilide hydrochloride as a substrate for N-acetylmuramoyl-L-alanine amidase activity. Both proteins showed similar maximum activity values for pH (8) and temperature (50°C). Furthermore, in silico predictions did not show differences for the catalytic region, but differences were found for the region called 3dom, which includes 3 of the 5 LysM domains. Therefore, the modification of the LysM domain offers new tools for the development of novel food biopreservatives.


2021 ◽  
Vol 22 (6) ◽  
pp. 3051
Author(s):  
Silvia López-Argüello ◽  
María Montaner ◽  
Antonio Oliver ◽  
Bartolome Moya

Avibactam belongs to the new class of diazabicyclooctane β-lactamase inhibitors. Its inhibitory spectrum includes class A, C and D enzymes, including P. aeruginosa AmpC. Nonetheless, recent reports have revealed strain-dependent avibactam AmpC induction. In the present work, we wanted to assess the mechanistic basis underlying AmpC induction and determine if derepressed PDC-X mutated enzymes from ceftazidime/avibactam-resistant clinical isolates were further inducible. We determined avibactam concentrations that half-maximally inhibited (IC50) bocillin FL binding. Inducer β-lactams were also studied as comparators. Live cells’ time-course penicillin-binding proteins (PBPs) occupancy of avibactam was studied. To assess the ampC induction capacity of avibactam and comparators, qRT-PCR was performed in wild-type PAO1, PBP4, triple PBP4, 5/6 and 7 knockout derivatives and two ceftazidime/avibactam-susceptible/resistant XDR clinical isolates belonging to the epidemic high-risk clone ST175. PBP4 inhibition was observed for avibactam and β-lactam comparators. Induction capacity was consistently correlated with PBP4 binding affinity. Outer membrane permeability-limited PBP4 binding was observed in the live cells’ assay. As expected, imipenem and cefoxitin showed strong induction in PAO1, especially for carbapenem; avibactam induction was conversely weaker. Overall, the inducer effect was less remarkable in ampC-derepressed mutants and nonetheless absent upon avibactam exposure in the clinical isolates harboring mutated AmpC variants and their parental strains.


2020 ◽  
Vol 21 (18) ◽  
pp. 6556
Author(s):  
Peng Zeng ◽  
Alvin Schmaier

Abl1 kinase has important biological roles. The Bcr-Abl1 fusion protein creates undesired kinase activity and is pathogenic in 95% of chronic myeloid leukemia (CML) and 30% of acute lymphoblastic leukemia (ALL) patients. Targeted therapies to these diseases are tyrosine kinase inhibitors. The extent of a tyrosine kinase inhibitor’s targets determines the degree of biologic effects of the agent that may influence the well-being of the patient. This fact is especially true with tyrosine kinase inhibitor effects on the cardiovascular system. Thirty-one percent of ponatinib-treated patients, the tyrosine kinase inhibitor with the broadest inhibitory spectrum, have thrombosis associated with its use. Recent experimental investigations have indicated the mechanisms of ponatinib-associated thrombosis. Further, an antidote to ponatinib is in development by re-purposing an FDA-approved medication.


Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 23 ◽  
Author(s):  
Pasquale Russo ◽  
Carmen Berbegal ◽  
Cristina De Ceglie ◽  
Francesco Grieco ◽  
Giuseppe Spano ◽  
...  

For three consecutive years, an Italian winery in Apulia has dealt with sudden alcoholic stuck fermentation in the early stages of vinification process, i.e., typical defects addressable to bacterial spoilage. After a prescreening trial, we assessed, for the first time, the influence of the commercial fungicide preparation Ridomil Gold® (Combi Pepite), containing Metalaxyl-M (4.85%) and Folpet (40%) as active principles, on the growth of several yeasts (Saccharomyces cerevisiae and non-Saccharomyces spp.) and lactic acid bacteria of oenological interest. We also tested, separately and in combination, the effects of Metalaxyl-M and Folpet molecules on microbial growth both in culture media and in grape must. We recalled the attention on Folpet negative effect on yeasts, extending its inhibitory spectrum on non-Saccharomyces (e.g., Candida spp.). Moreover, we highlighted a synergic effect of Metalaxyl-M and Folpet used together and a possible inhibitory role of the fungicide excipients. Interestingly, we identified the autochthonous S. cerevisiae strain E4 as moderately resistant to the Folpet toxicity. Our findings clearly indicate the urgent need for integrating the screening procedures for admission of pesticides for use on wine grape with trials testing their effects on the physiology of protechnological microbes.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Jooyoung Lee ◽  
Aamir Mir ◽  
Alireza Edraki ◽  
Bianca Garcia ◽  
Nadia Amrani ◽  
...  

ABSTRACT In their natural settings, CRISPR-Cas systems play crucial roles in bacterial and archaeal adaptive immunity to protect against phages and other mobile genetic elements, and they are also widely used as genome engineering technologies. Previously we discovered bacteriophage-encoded Cas9-specific anti-CRISPR (Acr) proteins that serve as countermeasures against host bacterial immunity by inactivating their CRISPR-Cas systems (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829–1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017). We hypothesized that the evolutionary advantages conferred by anti-CRISPRs would drive the widespread occurrence of these proteins in nature (K. L. Maxwell, Mol Cell 68:8–14, 2017, https://doi.org/10.1016/j.molcel.2017.09.002; A. Pawluk, A. R. Davidson, and K. L. Maxwell, Nat Rev Microbiol 16:12–17, 2018, https://doi.org/10.1038/nrmicro.2017.120; E. J. Sontheimer and A. R. Davidson, Curr Opin Microbiol 37:120–127, 2017, https://doi.org/10.1016/j.mib.2017.06.003). We have identified new anti-CRISPRs using the same bioinformatic approach that successfully identified previous Acr proteins (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829–1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017) against Neisseria meningitidis Cas9 (NmeCas9). In this work, we report two novel anti-CRISPR families in strains of Haemophilus parainfluenzae and Simonsiella muelleri, both of which harbor type II-C CRISPR-Cas systems (A. Mir, A. Edraki, J. Lee, and E. J. Sontheimer, ACS Chem Biol 13:357–365, 2018, https://doi.org/10.1021/acschembio.7b00855). We characterize the type II-C Cas9 orthologs from H. parainfluenzae and S. muelleri, show that the newly identified Acrs are able to inhibit these systems, and define important features of their inhibitory mechanisms. The S. muelleri Acr is the most potent NmeCas9 inhibitor identified to date. Although inhibition of NmeCas9 by anti-CRISPRs from H. parainfluenzae and S. muelleri reveals cross-species inhibitory activity, more distantly related type II-C Cas9s are not inhibited by these proteins. The specificities of anti-CRISPRs and divergent Cas9s appear to reflect coevolution of their strategies to combat or evade each other. Finally, we validate these new anti-CRISPR proteins as potent off-switches for Cas9 genome engineering applications. IMPORTANCE As one of their countermeasures against CRISPR-Cas immunity, bacteriophages have evolved natural inhibitors known as anti-CRISPR (Acr) proteins. Despite the existence of such examples for type II CRISPR-Cas systems, we currently know relatively little about the breadth of Cas9 inhibitors, and most of their direct Cas9 targets are uncharacterized. In this work we identify two new type II-C anti-CRISPRs and their cognate Cas9 orthologs, validate their functionality in vitro and in bacteria, define their inhibitory spectrum against a panel of Cas9 orthologs, demonstrate that they act before Cas9 DNA binding, and document their utility as off-switches for Cas9-based tools in mammalian applications. The discovery of diverse anti-CRISPRs, the mechanistic analysis of their cognate Cas9s, and the definition of Acr inhibitory mechanisms afford deeper insight into the interplay between Cas9 orthologs and their inhibitors and provide greater scope for exploiting Acrs for CRISPR-based genome engineering.


2017 ◽  
Vol 54 (1) ◽  
pp. 69
Author(s):  
J. METAXOPOULOS (Ι. ΜΕΤΑΞΟΠΟΥΛΟΣ) ◽  
M. MATARAGAS (M. ΜΑΤΑΡΑΓΚΑΣ) ◽  
E. H. DROSINOS (Ε.Χ. ΔΡΟΣΙΝΟΣ)

Lactic acid bacteria produce a variety of small molecular weight compounds, which have antimicrobial properties. Such substances are: organic acids, alcohols, carbon dioxide, diacetyl, hydrogen peroxide and bacteriocins. Many of these compounds have a wide inhibitory spectrum but the bacteriocins are able to inhibit species, namely, related with the bacteriocin-producing strain. In the last years bacteriocins have gained a lot of concern because some of them are able to inhibit the growth of pathogenic bacteria, like Listeria monocytogenes. The term "biopreservation" refers to the extension of storage life, as well as to the enhancement of the food safety, using the bacteriocin-producing lactic acid strains or their metabolic antibacterial products. In this review will be reported bacteriocins, which are produced by the lactic acid bacteria and will be discussed the potential application of the bacteriocinogenic strains or their bacteriocins on the foods, as protective cultures or as protective compounds, respectively.


LWT ◽  
2017 ◽  
Vol 84 ◽  
pp. 241-247 ◽  
Author(s):  
Babasola Adewunmi Osopale ◽  
Cornelia Regina Witthuhn ◽  
Jacobus Albertyn ◽  
Folarin Anthony Oguntoyinbo

Sign in / Sign up

Export Citation Format

Share Document