doppler power
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zaixue Wei ◽  
Qipeng Tang

Aerial communication is very flexible due to almost no restrictions on geographical conditions. In recent years, with the development and application of the unmanned aerial vehicle, the air-to-air communication attracts dense interests from the researchers. More accurate and precise channel modeling for air-to-air communication is a new hot topic because of its essential role in the performance evaluation of the systems. This paper presents an analytical nonstationary regular-shaped geometry-based statistical model for low-altitude air-to-air communication over an open area with considerations on ground scattering. Analytical expressions of the channel impulse response and the autocorrelation functions based on the three-ray model are derived. Based on the assumption of uniform distribution of the ground scatterers, the distributions of the channel coefficients such as time delay and path attenuation are derived, simulated, compared, and fitted. The nonstationary characteristics of the channel are observed through the time-variant distributions of the channel coefficients as well as the time-variant autocorrelated functions and time-variant Doppler power spectrum density.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Wenliang Lin ◽  
Yaohua Deng ◽  
Ke Wang ◽  
Zhongliang Deng ◽  
Hao Liu ◽  
...  

Low Earth Orbit (LEO) Satellite Internet Network (LEO-SIN) is a promising approach to global Gigabit per second (Gbps) broadband communications in the coming sixth-generation (6G) era. This paper mainly focuses on the innovation of accuracy improvement of simulation modeling of the Doppler Power Spectrum (DPS) of satellite channels in LEO-SIN. Existing DPS modeling methods are based on Rice’s Sum-of-Sinusoids (SOS) which have obvious modeling errors in scenarios with main signal propagation paths, asymmetrical power spectrum, and random multi-path signals with a random Angle of Arrival (AOA) in LEO-SIN. There are few state-of-art researches devoted to higher accuracy of DPS modeling for simulation. Therefore, this paper proposes a novel Random Method of Exact Doppler Spread method Set Partitioning (RMEDS-SP). Distinct from existed researches, we firstly model the DPS of LEO-SIN, which more accurately describes the characteristics of frequency dispersion with the main path and multi-path signals with random AOA. Furthermore, piecewise functions to the Autocorrelation Function (ACF) of RMEDS-SP is first exploited to converge the modeling error supposition with time by periodic changes, which further improve the accuracy of the DPS model. Experimental results show that the accuracy of DPS in our proposed model is improved by 32.19% and 18.52%, respectively when compared with existing models.


2021 ◽  
Vol 11 (21) ◽  
pp. 10081
Author(s):  
Brian J. Sánchez ◽  
David H. Covarrubias ◽  
Leonardo F. Yepes ◽  
Marco A. Panduro ◽  
Elizvan Juárez

With the arrival of 5G wireless communication systems, there has been increased interest in exploring higher frequency bands above 6 GHz, up to millimeter-wave frequencies. Radio wave propagation at these higher frequencies can suffer from substantial Doppler impairments. The linear dependency of Doppler shifts with carrier frequencies make them challenging to use in high-mobility 5G cellular scenarios. Therefore, the Doppler power spectrum (DPS) characteristics and radio channel coherence time (CT) of the received signals are of great importance for 5G wireless systems. In this way, this paper presents the effects of a narrow beam phased antenna array in reducing the DPS (due to user movement) and, simultaneously, increasing the coherence time (CT). Functional and complete descriptive assessments of beamwidths versus the DPS and CT, through different elements and geometries of the phased antenna array, are analyzed. Moreover, in terms of CT and the DPS, better performance on the 5G cellular scenarios was obtained.


2021 ◽  
Author(s):  
Hongcai Zhao ◽  
Yanbin Liu ◽  
Tayyab Farooq ◽  
Hui Fang

AbstractPhotoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra. Extending this technique to dual wavelengths can gain the spectral information of the flow sample extra to the flow speed information. An experimental system with two laser diodes respectively operated at 405 nm and 660 nm wavelengths is built and the flow measurement with black and red dyed polystyrene beads is performed. The measured Doppler power spectra can vividly reflect the flow speed, the flow direction, as well as the bead color. Since it is straightforward to further apply the same principle to multiple wavelengths, we can expect this type of spectroscopic photoacoustic Doppler flow measurement will be developed in the near future which will be very useful for studying the metabolism of the slowly moving red blood cell inside microvessels.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3271
Author(s):  
Naeem Ahmed ◽  
Boyu Hua ◽  
Qiuming Zhu ◽  
Kai Mao ◽  
Junwei Bao

A new non-stationary (NS) geometry-based stochastic model (GBSM) is presented for developing and testing the communication systems of vehicle-to-vehicle (V2V) applications, which considers the three-dimensional (3D) scattering environments and allows 3D velocity as well. In this paper, the proposed GBSM for NS V2V channels allowed 3D velocity variations and was more suitable for actual V2V communications because it provided smoother transitions between the consecutive channel segments. The time-variant channel coefficient and the channel parameters, i.e., Doppler frequencies, path delay and power, angle of arrival (AoA), and angle of departure (AoD), were analyzed and derived. Likewise, the theoretical statistical properties as the probability density function (PDF), the auto-correlation function (ACF), and Doppler power spectral density (DPSD) were also analyzed and derived under the von Mises–Fisher (VMF) distribution. Finally, the theoretical and measured results were well coordinated alongside the implemented results, which confirmed the feasibility of the introduced model along with the theoretical expressions.


Author(s):  
Eiichi Yoshikawa ◽  
Naoya Takizawa ◽  
Hiroshi Kikuchi ◽  
Tomoaki Mega ◽  
Tomoo Ushio

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 11811-11822
Author(s):  
Wen Liu ◽  
Shixuan Zheng ◽  
Zhongliang Deng ◽  
Ke Wang ◽  
Wenliang Lin ◽  
...  

2020 ◽  
Vol 10 (15) ◽  
pp. 5041
Author(s):  
Zaixue Wei ◽  
Qipeng Tang ◽  
Jian Geng ◽  
Sibo Chen ◽  
Lin Sang ◽  
...  

Channel modeling is crucial to the development and evaluation of modern wireless communication systems including satellite communication system, since there might be critical safty-of-life applications. Also, the channel model is of great importance to the performance evaluation of mobile communication systems. In recent years, encouraged by the widely application of unmanned aerial vehicles, the research on channel modeling for aerial and aeronautical communications attract lots of interests. In the published articles, stationary and non-stationary channel models have been developed for air-to-ground communications based on regular shaped geometry-based stochastic model (RS-GBSM). The modeling of air-to-air or satellite-to-aircraft (S2A) communication is still quite simple or completely lacking. For obtaining more precise model of S2A channel, this paper presents an analytical non-stationary S2A channel mode based on RS-GBSM with considerations on line-of-sight path, specular reflection path, and ground scattering path. Analytical expressions of the channel impulse responses, the transfer functions, the auto-correlation functions, and the Doppler power spectrum density based on 3-path model are derived and simulated. Also, the distributions of the path antennation, the path delay, and the normalized Doppler shift based on uniform distribution of the scatterers are derived, simulated and fitted.


2020 ◽  
Vol 10 (12) ◽  
pp. 4161
Author(s):  
Qiuming Zhu ◽  
Wei Huang ◽  
Kai Mao ◽  
Weizhi Zhong ◽  
Boyu Hua ◽  
...  

In this paper, a discrete non-stationary multiple-input multiple-output (MIMO) channel model suitable for the fixed-point realization on the field-programmable gate array (FPGA) hardware platform is proposed. On this basis, we develop a flexible hardware architecture with configurable channel parameters and implement it on a non-stationary MIMO channel emulator in a single FPGA chip. In addition, an improved non-stationary channel emulation method is employed to guarantee accurate channel fading and phase, and the schemes of other key modules are also illustrated and implemented in a single FPGA chip. Hardware tests demonstrate that the output statistical properties of proposed channel emulator, i.e., the probability density function (PDF), cross-correlation function (CCF), Doppler power spectrum density (DPSD), and the power delay profile (PDP) agree well with the corresponding theoretical ones.


2020 ◽  
Vol 2 (2) ◽  
pp. 100-107
Author(s):  
Michael Hambardzumyan ◽  
A. Hayrapetyan

Background:  The purpose of the study is to evaluate the assessment of ultrasound analysis in the differential diagnosis of skin melanoma and benign cutaneous lesions. Objective: 61 patients (23 men and 38 women) between 17 and 87 years of age, with melanomas, atheromas, hemangiomas, keratoses, and naevi were studied. Methods: High-frequency gray-scale ultrasound analysis, color Doppler, power Doppler, advanced dynamic flow, strain Elastography, digital Dermoscopy were performed in all cases. Results: In malignant melanoma cases we have mainly: sharp margins, hypoechoic, homogenous structure, absent of posterior shadowing, central and disorganized circulatory pattern with multiple peduncles. In some benign pathology, several ultrasound criteria were exclusive: microcalcifications are only in atheroma, posterior shadowing, and circular rim - in keratosis. The incidence of other ultrasound criteria can vary in atheroma, hemangioma, keratosis, and nevus. Tumor longitudinal and thickness relation were higher (7.9±1.96) than in all benign pathologies (2.1-4.8). The Elastography stiffness of the 26 skin melanomas was 2.95±0.18 and was higher than the group of 35 patients with all benign skin pathology (0.96±0.59), including atheroma (2.0±0.78), hemangioma (0.55±0.21), keratosis (1.21±0.21) and nevus (0.78±0.45). Conclusion: Multimodal approaches to exploring high-frequency ultrasound analytic criteria can be helpful in the differential diagnosis of malignant melanoma and benign cutaneous lesions.


Sign in / Sign up

Export Citation Format

Share Document