colorectal cancer progression
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 270)

H-INDEX

49
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Jingyu Chen ◽  
Zizhen Zhang ◽  
Jiaojiao Ni ◽  
Jiawei Sun ◽  
Fangyu Ju ◽  
...  

Abstract Background Colorectal cancer (CRC) is among the leading cause of cancer-related morbidity and mortality worldwide. Aerobic glycolysis, as a metabolic hallmark of cancer, plays an important role in CRC progression. Enolase 3 (ENO3) is a glycolytic enzyme that catalyzes 2-phosphoglycerate into phosphoenolpyruvate, while its role in CRC is still unknown. Methods Bioinformatics analysis was performed to examine the expression changes and roles of ENO3 in CRC patients from public databases. Then, ENO3 expression was validated in CRC tissues using Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) analysis, and western blot. Overexpression and silencing models were constructed using plasmid and lentivirus transfection. Cell viability, proliferation, and migration in vitro were applied to evaluate the protumoral effects of ENO3 on CRC. RNA sequencing and GO enrichment analysis of differentially expressed genes (DEGs) were performed to explore the underlying molecular mechanisms of ENO3 in CRC progression. The ATP and lactate production level were detected to assess cell glycolysis.


Theranostics ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 963-975
Author(s):  
Xin Wang ◽  
Jian Wang ◽  
Jiahui Zhao ◽  
Hao Wang ◽  
Jing Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ning Wang ◽  
Jun Li ◽  
Ju He ◽  
Yong-Guang Jing ◽  
Wei-dong Zhao ◽  
...  

Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3 ′ UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.


2021 ◽  
Vol 3 (4) ◽  
pp. 182-190
Author(s):  
Sourena Ghorbani Kalkhajeh ◽  
Alireza Parsanezhad ◽  
Mahdieh Banoei ◽  
Maryam Vahidi ◽  
Maziar Malekzadeh Kebria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document