copy number changes
Recently Published Documents


TOTAL DOCUMENTS

557
(FIVE YEARS 99)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David J. Bunyan ◽  
Evelien Gevers ◽  
James I. Hobbs ◽  
Philippa J. Duncan-Flavell ◽  
Rachel J. Howarth ◽  
...  

Abstract Background Transcriptional regulation of the SHOX gene is highly complex. Much of our understanding has come from the study of copy number changes of conserved non-coding sequences both upstream and downstream of the gene. Downstream deletions have been frequently reported in patients with Leri–Weill dyschondrosteosis or idiopathic short stature. In contrast, there are only four cases in the literature of upstream deletions that remove regulatory elements. Although duplications flanking the SHOX gene have also been reported, their pathogenicity is more difficult to establish. To further evaluate the role of flanking copy number variants in SHOX-related disorders, we describe nine additional patients from a large SHOX diagnostic cohort. Results The nine cases presented here include five with duplications (two upstream of SHOX and three downstream), one with a downstream triplication and three with upstream deletions. Two of the deletions remove a single conserved non-coding element (CNE-3) while the third does not remove any known regulatory element but is just 4 kb upstream of SHOX, and the deleted region may be important in limb bud development. We also describe six families with novel sequence gains flanking SHOX. Three families had increased dosage of a proposed regulatory element approximately 380 kb downstream of SHOX (X:970,000), including one family with the first ever reported triplication of this region. One family had two in cis downstream duplications co-segregating with LWD, and the two others had a duplication of just the upstream SHOX regulatory element CNE-5. Conclusions This study further extends our knowledge of the range of variants that may potentially cause SHOX-related phenotypes and may aid in determining the clinical significance of similar variants.


2021 ◽  
Author(s):  
Mi K Trinh ◽  
Clarissa N Pacyna ◽  
Gerda K Kildisiute ◽  
Nathaniel D Anderson ◽  
Eleonora Khabirova ◽  
...  

A fundamental step of tumour single cell mRNA analysis is separating cancer and non-cancer cells. We show that the common approach to separation, using shifts in average expression, can lead to erroneous biological conclusions. By contrast, allelic imbalances representing copy number changes directly detect the cancer genotype and accurately separate cancer from non-cancer cells. Our findings provide a definitive approach to identifying cancer cells from single cell mRNA sequencing data.


2021 ◽  
Vol 8 (11) ◽  
pp. 286
Author(s):  
Laura Hardwick

Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3246
Author(s):  
Alexander Keller ◽  
Claudia Spits

Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells’ clinical potential.


2021 ◽  
Author(s):  
Thorsten Horn ◽  
Kalin D. Narov ◽  
Kristen A. Panfilio

Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic RNAi response is transmitted from mother to offspring remains elusive. Using the flour beetle Tribolium castaneum, we report an RT-qPCR strategy to unmask the presence of double-stranded RNA (dsRNA) distinct from endogenous mRNA. We find that the injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, we show that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, we lastly present a phylogenomics profiling approach to ascertain macroevolutionary distributions of candidate proteins. We demonstrate a visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by several lines of sequence-based evidence. We use this approach to document repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi. Overall, we elucidate practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission to achieve long-term, systemic knockdown.


2021 ◽  
Vol 11 (11) ◽  
pp. 1197
Author(s):  
Hsiang-Yu Lin ◽  
Chung-Lin Lee ◽  
Sisca Fran ◽  
Ru-Yi Tu ◽  
Ya-Hui Chang ◽  
...  

Background: Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous disorder characterized by severe intrauterine growth retardation, poor postnatal growth, characteristic facial features, and body asymmetry. Hypomethylation of the imprinted genes of the chromosome 11p15.5 imprinting gene cluster and maternal uniparental disomy of chromosome 7 (mUPD7) are the major epigenetic disturbances. The aim of this study was to characterize the epigenotype, genotype, and phenotype of these patients in Taiwan. Methods: Two hundred and six subjects with clinically suspected SRS were referred for diagnostic testing, which was performed by profiling the methylation of H19-associated imprinting center (IC) 1 and the imprinted PEG1/MEST region using methylation-specific multiplex ligation-dependent probe amplification and high-resolution melting analysis with a methylation-specific polymerase chain reaction assay. We also applied a whole genome strategy to detect copy number changes and loss of heterozygosity. Clinical manifestations were recorded and analyzed according to the SRS scoring system proposed by Bartholdi et al. Results: Among the 206 referred subjects, 100 were classified as having a clinical diagnosis of SRS (score ≥ 8, maximum = 15) and 106 had an SRS score ≤ 7. Molecular lesions were detected in 45% (45/100) of the subjects with a clinical diagnosis of SRS, compared to 5% (5/106) of those with an SRS score ≤ 7. Thirty-seven subjects had IC1 hypomethylation, ten subjects had mUPD7, and three subjects had microdeletions. Several clinical features were found to be statistically different (p < 0.05) between the “IC1 hypomethylation” and “mUPD7” groups, including relative macrocephaly at birth (89% vs. 50%), triangular shaped face (89% vs. 50%), clinodactyly of the fifth finger (68% vs. 20%), and SRS score (11.4 ± 2.2 vs. 8.3 ± 2.5). Conclusions: The SRS score was positively correlated with the molecular diagnosis rate (p < 0.001). The SRS subjects with mUPD7 seemed to have fewer typical features and lower SRS scores than those with IC1 hypomethylation. Careful clinical observation and timely molecular confirmation are important to allow for an early diagnosis and multidisciplinary management of these patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4415-4415
Author(s):  
Kenneth J Caldwell ◽  
Yixin Hu ◽  
Mihaela Onciu ◽  
Sara M Federico ◽  
Marta Salek ◽  
...  

Abstract Secondary myelodysplastic syndromes and acute myeloid leukemia (sMDS/AML) are rare myeloid neoplasms in children/adolescents and have a dismal prognosis. The mainstay therapy is hematopoietic cell transplantation (HCT) but there has been little therapeutic innovation for decades and outcomes remain poor. CPX-351, a fixed 5:1 molar ratio of liposomal cytarabine/daunorubicin, has shown favorable safety and efficacy in elderly individuals with sAML and children with relapsed de novo AML, which led the FDA to recently expand the label of CPX-351 to include pediatric patients with secondary AML, however, no data has been reported in this patient group. We report the outcomes of seven young patients with newly diagnosed sMDS/AML uniformly treated with CPX-351. Five patients had previously received chemotherapy for osteosarcoma, Ewing sarcoma, neuroblastoma, or T-ALL; one had predisposing genomic instability disorder (Cornelia de Lange syndrome); and one presented with MDS-related AML and multi-organ failure. The median age at diagnosis of myeloid malignancy was 17 (13-23) years. We identified somatic mutations and copy-number changes across 16 leukemia driver genes in six cases (including TP53 in two), abnormal karyotypes in six cases and rearrangements involving MECOM or NIM1K-TERT in two patients. Additional genomic studies identified pathogenic germline mutations in CHEK2 and SMC3 each in a single patient . Patients received 1-3 cycles of CPX-351 (100 units/m 2 on days 1, 3, and 5) resulting in complete morphologic remission without overt toxicity or treatment-related mortality. This approach allowed for adding FLT3 inhibitor as individualized therapy in one patient. Six patients were alive and leukemia-free at 0.51-3.25 years after HCT. One patient died from disease progression before HCT. Concluding, CPX-351 is an effective and well-tolerated regimen for cytoreduction in pediatric secondary myeloid malignancies warranting further investigation Figure 1 Figure 1. Disclosures Triplett: Miltenyi: Other: Travel, meeting registration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick P. T. Leong ◽  
Aleksandar Mihajlović ◽  
Nadežda Bogdanović ◽  
Luka Breberina ◽  
Larry Xi

AbstractSingle-cell sequencing provides a new level of granularity in studying the heterogeneous nature of cancer cells. For some cancers, this heterogeneity is the result of copy number changes of genes within the cellular genomes. The ability to accurately determine such copy number changes is critical in tracing and understanding tumorigenesis. Current single-cell genome sequencing methodologies infer copy numbers based on statistical approaches followed by rounding decimal numbers to integer values. Such methodologies are sample dependent, have varying calling sensitivities which heavily depend on the sample’s ploidy and are sensitive to noise in sequencing data. In this paper we have demonstrated the concept of integer-counting by using a novel bioinformatic algorithm built on our library construction chemistry in order to detect the discrete nature of the genome.


2021 ◽  
Author(s):  
Thomas O. Auer ◽  
Raquel Álvarez-Ocaña ◽  
Steeve Cruchet ◽  
Richard Benton ◽  
J. Roman Arguello

Animals sample their chemical environment using sensory neurons that express diverse chemosensory receptors, which trigger responses when they bind environmental molecules. In addition to modifications in the ligand binding properties of receptors, chemosensory receptor evolution is characterized by copy number changes, often resulting in large gene family size differences between species. Though chemosensory receptor expansions and contractions are frequently described, it is unknown how this is accompanied by changes in the neural circuitry in which they are expressed. Among Drosophila's chemosensory receptor families, the Odorant receptors (Ors) are ideal for addressing this question because, other than an essential co-receptor (Orco), a large majority of Ors are uniquely expressed in single olfactory sensory neuron (OSN) populations. Between-species changes in Or copy number, therefore, may indicate diversification or reduction of peripheral sensory neuron populations. To test this possibility, we focused on a rapidly duplicated/deleted Or subfamily - named Or67a - within Drosophila melanogaster and its most closely-related sister species (D. simulans, D. sechellia, and D. mauritiana). Evolutionary genetic analyses and in vivo physiological assays demonstrate that the common ancestor of these four species possessed three Or67a paralogs that had already diverged adaptively in their odor-evoked responses. Following the group's speciation events, two Or67a paralogs were independently lost in D. melanogaster and D. sechellia, with positive selection continuing to act on the intact genes. Instead of the expected singular expression of each of the functionally diverged Ors in different neurons, we found that the three D. simulans Or67a paralogs are co-expressed in the same cells. Thus, while neuroanatomy is conserved between these species, independent selection on co-expressed receptors has contributed to species-specific peripheral coding of olfactory information. This work reveals a model of adaptive change previously not considered for olfactory evolution and raises the possibility that similar processes may be operating among the largely uninvestigated cases of Or co-expression.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009738
Author(s):  
Julius Mulindwa ◽  
Geofrey Ssentamu ◽  
Enock Matovu ◽  
Kevin Kamanyi Marucha ◽  
Francisco Aresta-Branco ◽  
...  

Most researchers who study unicellular eukaryotes work with an extremely limited number of laboratory-adapted isolates that were obtained from the field decades ago, but the effects of passage in laboratory rodents, and adaptation to in vitro culture, have been little studied. For example, the vast majority of studies of Trypanosoma brucei biology have concentrated on just two strains, Lister 427 and EATRO1125, which were taken from the field over half a century ago and have since have undergone innumerable passages in rodents and culture. We here describe two new Trypanosoma brucei brucei strains. MAK65 and MAK98, which have undergone only 3 rodent passages since isolation from Ugandan cattle. High-coverage sequencing revealed that adaptation of the parasites to culture was accompanied by changes in gene copy numbers. T. brucei has so far been considered to be uniformly diploid, but we also found trisomy of chromosome 5 not only in one Lister 427 culture, but also in the MAK98 field isolate. Trisomy of chromosome 6, and increased copies of other chromosome segments, were also seen in established cultured lines. The two new T. brucei strains should be useful to researchers interested in trypanosome differentiation and pathogenicity. Initial results suggested that the two strains have differing infection patterns in rodents. MAK65 is uniformly diploid and grew more reproducibly in bloodstream-form culture than MAK98.


Sign in / Sign up

Export Citation Format

Share Document