quadratic programming method
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Ali Iqbal Abbas ◽  
Afaneen Anwer

The aim of this work is to solve the unit commitment (UC) problem in power systems by calculating minimum production cost for the power generation and finding the best distribution of the generation among the units (units scheduling) using binary grey wolf optimizer based on particle swarm optimization (BGWOPSO) algorithm. The minimum production cost calculating is based on using the quadratic programming method and represents the global solution that must be arriving by the BGWOPSO algorithm then appearing units status (on or off). The suggested method was applied on “39 bus IEEE test systems”, the simulation results show the effectiveness of the suggested method over other algorithms in terms of minimizing of production cost and suggesting excellent scheduling of units.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6498
Author(s):  
Kashif Nisar ◽  
Zulqurnain Sabir ◽  
Muhammad Asif Zahoor Raja ◽  
Ag Asri Ag Ibrahim ◽  
Joel J. P. C. Rodrigues ◽  
...  

The aim of this work is to solve the case study singular model involving the Neumann–Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to present this numerical framework comes through the objective of introducing a reliable structure that associates the operative ANNs features using the optimization procedures of soft computing to deal with such stimulating systems. Four different problems that are based on the singular equations involving Neumann–Robin, Dirichlet, and Neumann boundary conditions have been occupied to scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed results through ANN-GA-SQPM have been compared with the exact results to check the efficiency of the scheme through the statistical performances for taking fifty independent trials. Moreover, the study of the neuron analysis based on three and 15 neurons is also performed to check the authenticity of the proposed ANN-GA-SQPM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Frederick M. Howard ◽  
James Dolezal ◽  
Sara Kochanny ◽  
Jefree Schulte ◽  
Heather Chen ◽  
...  

AbstractThe Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. However, we demonstrate that these features vary substantially across tissue submitting sites in TCGA for over 3,000 patients with six cancer subtypes. Additionally, we show that histologic image differences between submitting sites can easily be identified with DL. Site detection remains possible despite commonly used color normalization and augmentation methods, and we quantify the image characteristics constituting this site-specific digital histology signature. We demonstrate that these site-specific signatures lead to biased accuracy for prediction of features including survival, genomic mutations, and tumor stage. Furthermore, ethnicity can also be inferred from site-specific signatures, which must be accounted for to ensure equitable application of DL. These site-specific signatures can lead to overoptimistic estimates of model performance, and we propose a quadratic programming method that abrogates this bias by ensuring models are not trained and validated on samples from the same site.


Author(s):  
Kun Wu ◽  
Haiyan Hu ◽  
Lifeng Wang

The optimal design is studied for a type of one-dimensional dissipative metamaterial to achieve broadband wave attenuation at low-frequency ranges. The complex dispersion analysis is made on a super-cell consisting of multiple mass-in-mass unit cells. An optimization algorithm based on the sequential quadratic programming method is used to design the wave suppression of target frequencies by coupling multiple separate narrow bandgaps into a broad bandgap. A new objective function is proposed in the optimization process for a continuous bandgap. Then, the continuous frequency range with low-wave transmissibility is optimized to achieve the maximal width of bandgap. The stiffness optimization of super-cell gives the broad bandgap from 10 Hz to 22.9 Hz at low-frequency ranges. In addition, numerical simulations are conducted for a type of dissipative metamaterial composed of a finite number of periodicities. The level of vibration isolation can be tuned by adjusting a critical value in the optimization scheme. The wave suppression in the numerical simulation well coincides with the obtained bandgaps and verifies the optimization results.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4498
Author(s):  
Anton Royanto Ahmad ◽  
Terrence Wynn ◽  
Chyi-Yeu Lin

Strain gage type six-axis force/moment (F/M) sensors have been largely studied and implemented in industrial applications by using an external data acquisition board (DAQ). The use of external DAQs will ill-affect accuracy and crosstalk due to the possibility of voltage drop through the wire length. The most recent research incorporated DAQ within a relatively small F/M sensor, but only for sensors of the capacitance and optical types. This research establishes the integration of a high-efficiency DAQ on six-axis F/M sensor with a revolutionary arrangement of 32 strain gages. The updated structural design was optimized using the sequential quadratic programming method and validated using Finite Element Analysis (FEA). A new, integrated DAQ system was designed, tested, and compared to commercial DAQ systems. The proposed six-axis F/M sensor was examined with the calibrated jig. The results show that the measurement error and crosstalk have been significantly reduced to 1.15% and 0.68%, respectively, the best published combination at this moment.


Author(s):  
Dongchang Hou ◽  
Lifeng Wang ◽  
Yiqing Zhang

In this paper, the vibration of a stacked multilayered graphene/black phosphorus (G/BP) heterostructure is investigated via the mesh-free method. The shape function and its derivatives are addressed by the moving least squares (MLS) approach. Optimization of the sequential quadratic programming method is adopted to calculate the distance between the arbitrary layers. Therefore, coefficients of the van der Waals (vdW) interaction between arbitrary layers of heterostructures are obtained. Then the frequencies and mode shapes of the multilayered G/BP heterostructure, considering the vdW interaction between arbitrary layers, are compared with considering only the vdW interaction among adjacent layers. The effects of the number of layers and aspect ratio of the G/BP heterostructure on the frequencies are investigated. The results demonstrate that coefficients of the vdW interaction, considering the arbitrary layers, are larger than those considering only adjacent layers. The difference between natural frequencies considering arbitrary layers and those considering adjacent layers is not clear for the low-order cases. Alternatively, the difference between natural frequencies obtained considering arbitrary layers and those considering adjacent layers are obvious for high-order cases. This paper provides a useful method to optimize the vdW interaction between multilayered G/BP heterostructures and can adequately simulate their vibration behaviors.


Author(s):  
Serdar Coskun ◽  
Cong Huang ◽  
Fengqi Zhang

Cooperative longitudinal motion control can greatly contribute to safety, mobility, and sustainability issues in today’s transportation systems. This article deals with the development of cooperative adaptive cruise control (CACC) under uncertainty using a model predictive control strategy. Specifically, uncertainties arising in the system are presented as disturbances acting in the system and measurement equations in a state-space formulation. We aim to design a predictive controller under a common goal (cooperative control) such that the equilibrium from initial condition of vehicles will remain stable under disturbances. The state estimation problem is handled by a Kalman filter and the optimal control problem is formulated by the quadratic programming method under both state and input constraints considering traffic safety, efficiency, as well as driving comfort. In the sequel, adopting the CACC system in four-vehicle platoon scenarios are tested via MATLAB/Simulink for cooperative vehicle platooning control under different disturbance realizations. Moreover, the computational effectiveness of the proposed control strategy is verified with respect to different platoon sizes for possible real-time deployment in next-generation cooperative vehicles.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhisong Xu ◽  
Mingqiu Li

When fractional calculus operators and models are implemented rationally, there exist some problems such as low approximation accuracy of rational approximation function, inability to specify arbitrary approximation frequency band, or poor robustness. Based on the error criterion of the least squares method, a quadratic programming method based on the frequency-domain error is proposed. In this method, the frequency-domain error minimization between the fractional operator s ± r and its rational approximation function is transformed into a quadratic programming problem. The results show that the construction method of the optimal rational approximation function of fractional calculus operator is effective, and the optimal rational approximation function constructed can effectively approximate the fractional calculus operator and model for the specified approximation frequency band.


2020 ◽  
Author(s):  
Frederick M. Howard ◽  
James Dolezal ◽  
Sara Kochanny ◽  
Jefree Schulte ◽  
Heather Chen ◽  
...  

AbstractThe Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. However, we demonstrate that these features vary substantially across tissue submitting sites in TCGA for over 3,000 patients with six cancer subtypes. Additionally, we show that histologic image differences between submitting sites can easily be identified with DL. This site detection remains possible despite commonly used color normalization and augmentation methods, and we quantify the digital image characteristics constituting this histologic batch effect. As an example, we show that patient ethnicity within the TCGA breast cancer cohort can be inferred from histology due to site-level batch effect, which must be accounted for to ensure equitable application of DL. Batch effect also leads to overoptimistic estimates of model performance, and we propose a quadratic programming method to guide validation that abrogates this bias.


Sign in / Sign up

Export Citation Format

Share Document