multiple feature
Recently Published Documents


TOTAL DOCUMENTS

583
(FIVE YEARS 174)

H-INDEX

29
(FIVE YEARS 10)

Author(s):  
Paul Ntim Yeboah ◽  
Stephen Kweku Amuquandoh ◽  
Haruna Balle Baz Musah

Conventional approaches to tackling malware attacks have proven to be futile at detecting never-before-seen (zero-day) malware. Research however has shown that zero-day malicious files are mostly semantic-preserving variants of already existing malware, which are generated via obfuscation methods. In this paper we propose and evaluate a machine learning based malware detection model using ensemble approach. We employ a strategy of ensemble where multiple feature sets generated from different n-gram sizes of opcode sequences are trained using a single classifier. Model predictions on the trained multi feature sets are weighted and combined on average to make a final verdict on whether a binary file is malicious or benign. To obtain optimal weight combination for the ensemble feature sets, we applied a grid search on a set of pre-defined weights in the range 0 to 1. With a balanced dataset of 2000 samples, an ensemble of n-gram opcode sequences of n sizes 1 and 2 with respective weight pair 0.3 and 0.7 yielded the best detection accuracy of 98.1% using random forest (RF) classifier. Ensemble n-gram sizes 2 and 3 obtained 99.7% as best precision using weight 0.5 for both models.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lei Lei ◽  
Jian Wu ◽  
Shuhai Zheng ◽  
Xinyi Zhang ◽  
Liang Wang ◽  
...  

Image analysis of power equipment has important practical significance for power-line inspection and maintenance. This paper proposes an image recognition method for power equipment based on multitask sparse representation. In the feature extraction stage, based on the two-dimensional (2D) random projection algorithm, multiple projection matrices are constructed to obtain the multilevel features of the image. In the classification process, considering that the image acquisition process will inevitably be affected by factors such as light conditions and noise interference, the proposed method uses the multitask compressive sensing algorithm (MtCS) to jointly represent multiple feature vectors to improve the accuracy and robustness of reconstruction. In the experiment, the images of three types of typical power equipment of insulators, transformers, and circuit breakers are classified. The correct recognition rate of the proposed method reaches 94.32%. In addition, the proposed method can maintain strong robustness under the conditions of noise interference and partial occlusion, which further verifies its effectiveness.


2021 ◽  
Author(s):  
Ala Saleh Alluhaidan ◽  
Prabu P ◽  
Sivakumar R

Abstract Feature selection plays a vital role for every data analysis application. Feature selection aims to choose prominent set of features after removing redundant and irrelevant features from original set of features. High Dimensional dataset poses a challenging task for Machine Learning algorithms. Many state-of-art solutions were developed to handle this issue. High dimensionality in addition to imbalance ratio in the dataset becomes a tedious task. To overcome the issue, this paper introduces a novel method namely Pearson’s Redundancy Based Multi Filter algorithm with improved BAT algorithm (PRBMF-iBAT) to obtain multiple feature subsets. PRBMF is implemented using multiple filters to obtain highly relevant features. iBAT algorithm uses these features to find best subset of features for classification. The results prove that PRBMF-iBAT perform better for the classifier in terms of Accuracy, Precision, Recall and F- Measure for three micro array datasets with SVM classifier. The proposed system achieves 97.99% of accuracy as highest compared to the existing rCBR-BGOA algorithm.


2021 ◽  
Vol 7 ◽  
pp. e774
Author(s):  
Wei Jiang ◽  
Yuhanxiao Ma ◽  
Ruiqi Chen

Since consuming gutter oil does great harm to people’s health, the Food Safety Administration has always been seeking for a more effective and timely supervision. As laboratory tests consume much time, and existing field tests have excessive limitations, a more comprehensive method is in great need. This is the first time a study proposes machine learning algorithms for real-time gutter oil detection under multiple feature dimensions. Moreover, it is deployed on FPGA to be low-power and portable for actual use. Firstly, a variety of oil samples are generated by simulating the real detection environment. Next, based on previous studies, sensors are used to collect significant features that help distinguish gutter oil. Then, the acquired features are filtered and compared using a variety of classifiers. The best classification result is obtained by k-NN with an accuracy of 97.18%, and the algorithm is deployed to FPGA with no significant loss of accuracy. Power consumption is further reduced with the approximate multiplier we designed. Finally, the experimental results show that compared with all other platforms, the whole FPGA-based classification process consumes 4.77 µs and the power consumption is 65.62 mW. The dataset, source code and the 3D modeling file are all open-sourced.


2021 ◽  
Author(s):  
◽  
Soha Ahmed

<p>Mass spectrometry (MS) is currently the most commonly used technology in biochemical research for proteomic analysis. The primary goal of proteomic profiling using mass spectrometry is the classification of samples from different experimental states. To classify the MS samples, the identification of protein or peptides (biomarker detection) that are expressed differently between the classes, is required.  However, due to the high dimensionality of the data and the small number of samples, classification of MS data is extremely challenging. Another important aspect of biomarker detection is the verification of the detected biomarker that acts as an intermediate step before passing these biomarkers to the experimental validation stage.  Biomarker detection aims at altering the input space of the learning algorithm for improving classification of proteomic or metabolomic data. This task is performed through feature manipulation.  Feature manipulation consists of three aspects: feature ranking, feature selection, and feature construction. Genetic programming (GP) is an evolutionary computation algorithm that has the intrinsic capability for the three aspects of feature manipulation. The ability of GP for feature manipulation in proteomic biomarker discovery has not been fully investigated. This thesis, therefore, proposes an embedded methodology for these three aspects of feature manipulation in high dimensional MS data using GP. The thesis also presents a method for biomarker verification, using GP. The thesis investigates the use of GP for both single-objective and multi-objective feature selection and construction.  In feature ranking, the thesis proposes a GP-based method for ranking subsets of features by using GP as an ensemble approach. The proposed algorithm uses GP capability to combine the advantages of different feature ranking metrics and evolve a new ranking scheme for the subset of the features selected from the top ranked features. The capability of GP as a classifier is also investigated by this method. The results show that GP can select a smaller number of features and provide a better ranking of the selected features, which can improve the classification performance of five classifiers.  In feature construction, this thesis proposes a novel multiple feature construction method, which uses a single GP tree to generate a new set of high-level features from the original set of selected features. The results show that the proposed new algorithm outperforms two feature selection algorithms.  In feature selection, the thesis introduces the first GP multi-objective method for biomarker detection, which simultaneously increase the classification accuracy and reduce the number of detected features. The proposed multi-objective method can obtain better subsets of features than the single-objective algorithm and two traditional multi-objective approaches for feature selection. This thesis also develops the first multi-objective multiple feature construction algorithm for MS data. The proposed method aims at both maximising the classification performance and minimizing the cardinality of the constructed new high-level features. The results show that GP can dis- cover the complex relationships between the features and can significantly improve classification performance and reduce the cardinality.  For biomarker verification, the thesis proposes the first GP biomarker verification method through measuring the peptide detectability. The method solves the imbalance problem in the data and shows improvement over the benchmark algorithms. Also, the algorithm outperforms a well-known peptide detection method. The thesis also introduces a new GP method for alignment of MS data as a preprocessing stage, which will further help in improving the biomarker detection process.</p>


2021 ◽  
Author(s):  
◽  
Soha Ahmed

<p>Mass spectrometry (MS) is currently the most commonly used technology in biochemical research for proteomic analysis. The primary goal of proteomic profiling using mass spectrometry is the classification of samples from different experimental states. To classify the MS samples, the identification of protein or peptides (biomarker detection) that are expressed differently between the classes, is required.  However, due to the high dimensionality of the data and the small number of samples, classification of MS data is extremely challenging. Another important aspect of biomarker detection is the verification of the detected biomarker that acts as an intermediate step before passing these biomarkers to the experimental validation stage.  Biomarker detection aims at altering the input space of the learning algorithm for improving classification of proteomic or metabolomic data. This task is performed through feature manipulation.  Feature manipulation consists of three aspects: feature ranking, feature selection, and feature construction. Genetic programming (GP) is an evolutionary computation algorithm that has the intrinsic capability for the three aspects of feature manipulation. The ability of GP for feature manipulation in proteomic biomarker discovery has not been fully investigated. This thesis, therefore, proposes an embedded methodology for these three aspects of feature manipulation in high dimensional MS data using GP. The thesis also presents a method for biomarker verification, using GP. The thesis investigates the use of GP for both single-objective and multi-objective feature selection and construction.  In feature ranking, the thesis proposes a GP-based method for ranking subsets of features by using GP as an ensemble approach. The proposed algorithm uses GP capability to combine the advantages of different feature ranking metrics and evolve a new ranking scheme for the subset of the features selected from the top ranked features. The capability of GP as a classifier is also investigated by this method. The results show that GP can select a smaller number of features and provide a better ranking of the selected features, which can improve the classification performance of five classifiers.  In feature construction, this thesis proposes a novel multiple feature construction method, which uses a single GP tree to generate a new set of high-level features from the original set of selected features. The results show that the proposed new algorithm outperforms two feature selection algorithms.  In feature selection, the thesis introduces the first GP multi-objective method for biomarker detection, which simultaneously increase the classification accuracy and reduce the number of detected features. The proposed multi-objective method can obtain better subsets of features than the single-objective algorithm and two traditional multi-objective approaches for feature selection. This thesis also develops the first multi-objective multiple feature construction algorithm for MS data. The proposed method aims at both maximising the classification performance and minimizing the cardinality of the constructed new high-level features. The results show that GP can dis- cover the complex relationships between the features and can significantly improve classification performance and reduce the cardinality.  For biomarker verification, the thesis proposes the first GP biomarker verification method through measuring the peptide detectability. The method solves the imbalance problem in the data and shows improvement over the benchmark algorithms. Also, the algorithm outperforms a well-known peptide detection method. The thesis also introduces a new GP method for alignment of MS data as a preprocessing stage, which will further help in improving the biomarker detection process.</p>


2021 ◽  
Author(s):  
Madalina Ciortan ◽  
Matthieu Defrance

Subspace clustering identifies multiple feature subspaces embedded in a dataset together with the underlying sample clusters. When applied to omic data, subspace clustering is a challenging task, as additional problems have to be addressed: the curse of dimensionality, the imperfect data quality and cluster separation, the presence of multiple subspaces representative of divergent views of the dataset, and the lack of consensus on the best clustering method. First, we propose a computational method discover to perform subspace clustering on tabular high dimensional data by maximizing the internal clustering score (i.e. cluster compactness) of feature subspaces. Our algorithm can be used in both unsupervised and semi-supervised settings. Secondly, by applying our method to a large set of omic datasets (i.e. microarray, bulk RNA-seq, scRNA-seq), we show that the subspace corresponding to the provided ground truth annotations is rarely the most compact one, as assumed by the methods maximizing the internal quality of clusters. Our results highlight the difficulty of fully validating subspace clusters (justified by the lack of feature annotations). Tested on identifying the ground-truth subspace, our method compared favorably with competing techniques on all datasets. Finally, we propose a suite of techniques to interpret the clustering results biologically in the absence of annotations. We demonstrate that subspace clustering can provide biologically meaningful sample-wise and feature-wise information, typically missed by traditional methods.


Sign in / Sign up

Export Citation Format

Share Document