jnk cascade
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 3)

Biology Open ◽  
2021 ◽  
Author(s):  
Byoungjoo Yoo ◽  
Hae-yoon Kim ◽  
Xi Chen ◽  
Weiping Shen ◽  
Ji Sun Jang ◽  
...  

Steroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central hormone regulator of molting and metamorphosis, and plays roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including zipper, which encodes for non-muscle myosin. Canonical ecdysone signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of responsive genes to drive expression. During DC, however, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 transcription factor subunit, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1.


2021 ◽  
Author(s):  
Byoungjoo Yoo ◽  
Hae-yoon Kim ◽  
Xi Chen ◽  
Weiping Shen ◽  
Ji Sun Jang ◽  
...  

ABSTRACTSteroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central regulator of molting and metamorphosis, and has been shown to play roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including the zipper locus, which encodes for non-muscle myosin II heavy chain. Canonical 20E signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of ecdysone-responsive genes to drive their expression. During DC, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 component, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1.


2020 ◽  
Vol 21 (20) ◽  
pp. 7463
Author(s):  
Chih-Yeu Fang ◽  
Tsung-Ching Lai ◽  
Michael Hsiao ◽  
Yu-Chan Chang

Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer’s diseases. This review collates current knowledge concerning the roles of TAOKs in protein–protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs’ effects in pathological situations.


2020 ◽  
Vol 167 (5) ◽  
pp. 433-439 ◽  
Author(s):  
Tatsuhiro Shimizu ◽  
Naoki Hisamoto

Abstract Axon regeneration following nerve injury is a highly conserved process in animals. The nematode Caenorhabditis elegans is an excellent model for investigating the molecular mechanisms of axon regeneration. Recent studies using C. elegans have shown that the c-Jun N-terminal kinase (JNK) plays the important role in axon regeneration. Furthermore, many factors have been identified that act upstream of the JNK cascade after axotomy. This review introduces these factors and describes their roles during the regulation of axon regeneration.


2019 ◽  
Vol 20 (21) ◽  
pp. 5374 ◽  
Author(s):  
Sergey M. Lunin ◽  
Maxim O. Khrenov ◽  
Olga V. Glushkova ◽  
Svetlana B. Parfenyuk ◽  
Tatyana V. Novoselova ◽  
...  

Relapsing–remitting experimental autoimmune encephalomyelitis (rEAE) in mice is a model that closely resembles relapsing–remitting multiple sclerosis in humans. This study aims to investigate a new approach to modulation of the inflammatory response in rEAE mice using a thymic peptide thymulin bound to polybutylcyanoacrylate (PBCA) nanoparticles. PBCA nanoparticles were used to prolong the presence of thymulin in the blood. Cytokine levels in blood were measured by ELISA; NF-κB and SAPK/JNK cascade activation, as well as Hsp72 and p53 protein expression, were measured by Western blotting. Animal health statuses were estimated using severity scores. Results showed that the cytokine response in rEAE was multi-staged: an early phase was accompanied by an increase in plasma interferon-γ, while the interleukin (IL)-17 response was markedly increased at a later stage. The stages were attributed to rEAE induction and maintenance phases. Thymulin significantly alleviated symptoms of rEAE and lowered plasma cytokine levels both in early and later stages of rEAE, and decreased NF-κB and SAPK/JNK cascade activation. Thymulin modulated NF-kappaB pathway activity via site-specific phosphorylation of RelA/p65 protein (at Ser276 and Ser536). The effect of nanoparticle-bound thymulin was more pronounced than the effect of free thymulin. Therefore, PBCA–thymulin can be considered a prospective treatment for this pathology.


2019 ◽  
Vol 116 (28) ◽  
pp. 14138-14143 ◽  
Author(s):  
Kun Chen ◽  
Pei Ying Ng ◽  
Ruiying Chen ◽  
Dorothy Hu ◽  
Shawn Berry ◽  
...  

Loss-of-function mutations in the Wnt inhibitor secreted frizzled receptor protein 4 (SFRP4) cause Pyle’s disease (OMIM 265900), a rare skeletal disorder characterized by wide metaphyses, significant thinning of cortical bone, and fragility fractures. In mice, we have shown that the cortical thinning seen in the absence ofSfrp4is associated with decreased periosteal and endosteal bone formation and increased endocortical resorption. While the increase in Rankl/Opg in cortical bone of mice lackingSfrp4suggests an osteoblast-dependent effect on endocortical osteoclast (OC) activity, whether Sfrp4 can cell-autonomously affect OCs is not known. We found thatSfrp4is expressed during bone marrow macrophage OC differentiation and that Sfrp4 significantly suppresses the ability of early and late OC precursors to respond to Rankl-induced OC differentiation.Sfrp4deletion in OCs resulted in activation of canonical Wnt/β-catenin and noncanonical Wnt/Ror2/Jnk signaling cascades. However, while inhibition of canonical Wnt/β-catenin signaling did not alter the effect ofSfrp4on OCgenesis, blocking the noncanonical Wnt/Ror2/Jnk cascade markedly suppressed its regulation of OC differentiation in vitro. Importantly, we report that deletion ofRor2exclusively in OCs (CtskCreRor2fl/fl) inSfrp4null mice significantly reversed the increased number of endosteal OCs seen in these mice and reduced their cortical thinning. Altogether, these data show autocrine and paracrine effects of Sfrp4 in regulating OCgenesis and demonstrate that the increase in endosteal OCs seen inSfrp4−/−mice is a consequence of noncanonical Wnt/Ror2/Jnk signaling activation in OCs overriding the negative effect that activation of canonical Wnt/β-catenin signaling has on OCgenesis.


2019 ◽  
Vol 11 ◽  
pp. 175883591987557 ◽  
Author(s):  
Jae Gwang Park ◽  
Nur Aziz ◽  
Jae Youl Cho

One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.


Metabolism ◽  
2018 ◽  
Vol 85 ◽  
pp. 313-324 ◽  
Author(s):  
Min Gao ◽  
Yu Du ◽  
Jing-Wen Xie ◽  
Jing Xue ◽  
Yi-Ting Wang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengyu Jiang ◽  
Yan Meng ◽  
Lulong Bo ◽  
Changli Wang ◽  
Jinjun Bian ◽  
...  

Septic liver injury/failure that is mainly characterized by oxidative stress, inflammation, and apoptosis led to a great part of terminal liver pathology with limited effective intervention. Here, we used a lipopolysaccharide (LPS) stimulation model to simulate the septic liver injury and investigated the effect of sophocarpine on LPS-stimulated mice with endotoxemia. We found that sophocarpine increases the survival rate of mice and attenuates the LPS-induced liver injury, which is indicated by pathology and serum liver enzymes. Further research found that sophocarpine ameliorated hepatic oxidative stress indicators (H2O2, O2∙−, and NO) and enhanced the expression of antioxidant molecules such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In addition, sophocarpine also attenuated regional and systematic inflammation and further reduced apoptosis of hepatocytes. Mechanistic evidence was also investigated in the present study as sophocarpine inhibited hepatic expression of the CYP2E/Nrf2 pathway during oxidative stress, inactivated p38/JNK cascade and NF-κB pathway, and, meanwhile, suppressed PI3K/AKT signaling that reduced apoptosis. Conclusively, the present study unveiled the protective role of sophocarpine in LPS-stimulated oxidative reaction, inflammation, and apoptosis by suppressing the CYP2E/Nrf2/ROS as well as PI3K/AKT pathways, suggesting its promising role in attenuating inflammation and liver injury of septic endotoxemia.


Sign in / Sign up

Export Citation Format

Share Document