chemical synthesis route
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
M. S. Nisha ◽  
S. Mullai Venthan ◽  
P. Senthil Kumar ◽  
Dalbir Singh

Nanostructured carbon dispersed polymer nanocomposites are promising materials for tribological applications. Carbon nanofiber (CNF) and carbon nanotube (CNT) dispersed polyvinylidene fluoride (PVDF) nanocomposite was prepared by chemical synthesis route. Morphology and microstructure of well-dispersed CNF and CNT in PVDF were specified by scanning electron microscope and X-ray diffraction, respectively. Moreover, chemical and functional characteristics were examined by Raman spectroscopy and FTIR investigation. The friction coefficient of PVDF nanocomposite laminated on steel substrate decreased with an increase in the dispersed quantity of CNF and CNT. The friction coefficient of PVDF is approximately 0.27; however, the addition of carbon nanomaterial in PVDF will further decrease the friction coefficient between 0.24 and 0.17. This value was significantly less in CNT dispersed PVDF nanocomposite. This could be explained by easy shearing and rolling action contact interfaces.


2022 ◽  
Vol 3 ◽  
Author(s):  
Gina Fioroni ◽  
Rui Katahira ◽  
Stefanie Van Wychen ◽  
Steven M. Rowland ◽  
Earl D. Christensen ◽  
...  

In the context of decarbonizing the economy, the utilization of biologically sourced feedstocks to produce replacements for petroleum-derived materials is becoming more urgent. Improving renewable biomass production and utilization is imperative for commercializing future biorefineries. Algae-derived biomass is a particularly promising feedstock thanks to its attractive oil content and composition; specifically, the high-value products in the unsaponifiable lipids have not been included in a conversion process. Here we demonstrate surfactant synthesis from a complex oil fraction as the hydrophobic donor moieties, yielding products that are similar to commercially available surfactants such as the linear alkyl benzene sulfonates. Unsaponifiable lipids extracted from algae were derivatized to non-ionic surfactants using a green chemical synthesis route based on a double esterification with succinic acid and polyethylene glycol. The in-depth molecular and structural surfactant characterization is included and indicates that the resulting properties fall between those of pure cholesterol and phytol used as surrogates for the reaction synthesis demonstration. This is the first demonstration of an effective and potentially high-value synthesis of functional surfactants with properties that can be tailored based on the relative composition of the resulting hydrocarbon alcohol components in the mixture. This novel green chemistry synthesis approach provides a route to high-value product synthesis from algae.


2021 ◽  
Vol 893 ◽  
pp. 31-35
Author(s):  
Jin Lian Hu ◽  
Yuan Zhang Jiang ◽  
Lin Gu

Spiders silks have extraordinary strength and toughness simultaneously, thus has become dreamed materials by scientists and industries. Although there have been tremendous attempts to prepare fibers from genetically manufacture spider silk proteins, however, it has been still a huge challenge because of tedious procedure and high cost. Here, a facile spider-silk-mimicking strategy is reported for preparing highly scratchable polymers and supertough fibers from chemical synthesis route. Polymer films with high extensibility (>1200%) and supertough fibers (~387 MJ m-3) are achieved by introducing polypeptides with β-sheet and α-helical structure in polyureathane/urea polymers. Notabley,the toughness of the fiber is more than twice the reported value of a normal spider dragline silk, and comparable with the toughest spider silk, aciniform silk of Argiope trifasciata.


2020 ◽  
Vol 52 (12) ◽  
pp. 1420-1426
Author(s):  
Mingyue Fei ◽  
Xudan Mao ◽  
Yiyang Chen ◽  
Yalan Lu ◽  
Lin Wang ◽  
...  

Abstract β-Alanine (3-aminopropionic acid) holds great potential in industrial application. It can be obtained through a chemical synthesis route, which is hazardous to the environment. It is well known that l-aspartate-α-decarboxylase (ADC) can convert l-aspartate to β-alanine in bacteria. However, due to the low activity of ADC, industrial production of β-alanine through the green biological route remains unclear. Thus, improving the activity of ADC is critical to reduce the cost of β-alanine production. In this study, we established a dual-fluorescence high-throughput system for efficient ADC screening. By measuring the amount of β-alanine and the expression level of ADC using two different fluorescence markers, we can rapidly quantify the relative activity of ADC variants. From a mutagenesis library containing 2000 ADC variants, we obtained a mutant with 33% increased activity. Further analysis revealed that mutations of K43R and P103Q in ADC significantly improved the yield of β-alanine produced by the whole-cell biocatalysis. Compared with the previous single-fluorescence method, our system can not only quantify the amount of β-alanine but also measure the expression level of ADC with different fluorescence, making it able to effectively screen out ADC variants with improved relative activity. The dual-fluorescence high-throughput system for rapid screening of ADC provides a good strategy for industrial production of β-alanine via the biological conversion route in the future.


Langmuir ◽  
2020 ◽  
Vol 36 (42) ◽  
pp. 12590-12600
Author(s):  
Shabab Saad ◽  
Harsovin Kaur ◽  
Giovanniantonio Natale

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 874
Author(s):  
Till Tiso ◽  
Daniel F. Sauer ◽  
Klaus Beckerle ◽  
Christian C. Blesken ◽  
Jun Okuda ◽  
...  

Here we report a chemoenzymatic approach to synthesize 1-octene from carbohydrates via ethenolysis of rhamnolipids. Rhamnolipids synthesized by P. putida contain a double bond between carbon five and six, which is experimentally confirmed via olefin cross metathesis. Utilizing these lipids in the ethenolysis catalyzed by a Grubbs−Hoveyda-type catalyst selectively generates 1-octene and with good conversions. This study shows the potential of chemoenzymatic approaches to produce compounds for the chemical industry from renewable resources.


2019 ◽  
Vol 45 (15) ◽  
pp. 19173-19181 ◽  
Author(s):  
Aqrab ul Ahmad ◽  
Hongwei Liang ◽  
Qasim Abbas ◽  
Sajid Ali ◽  
Muzammil Iqbal ◽  
...  

2019 ◽  
Vol 13 (4) ◽  
pp. 427-434
Author(s):  
Milica Pocuca-Nesic ◽  
Zorica Marinkovic-Stanojevic ◽  
Patricia Cotic-Smole ◽  
Aleksandra Dapcevic ◽  
Nikola Tasic ◽  
...  

Yttrium manganite (YMnO3) is widely investigated multiferroic material with potential use in many technological applications. In this paper, we report on the preparation and characterization of multiferroic hexagonal YMnO3 ceramics obtained by chemical synthesis route. Precursor powders were prepared by the polymerizable complex method from citrate precursors. After calcination at 900?C the powders contained mixture of Y-Mn-O phases which were further sintered at different temperatures. XRD analysis revealed that sintering at 1400?C resulted in the formation of pure hexagonal YMnO3. Density of the obtained ceramics was 96%TD. The ceramic samples proved to have multiferroic properties - they are antiferromagnetic below 42K with linear dependence of magnetization as a function of applied magnetic field. The ferroelectric measurements performed at room temperature showed remanent polarization of 0.21 ?C/cm2 and the coercive field of 6.0 kV/cm for the YMnO3 sample sintered at 1400?C. The magnetization curves measured at 2 and 5 K for the powder samples calcined at 900?C and ceramic samples sintered at 1300?C exhibited a hysteresis loop due to a small concentration of Mn3O4 in the samples.


Sign in / Sign up

Export Citation Format

Share Document