constant altitude
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2145 (1) ◽  
pp. 012052
Author(s):  
N Chaijum ◽  
L Cheunchantawong ◽  
T Siriram

Abstract This article is about designing and building a single-axis solar tracking system referring to the sun position database. The objectives are as follows: 1. to design and build a solar tracking system, and, 2. to compare the power produced from the solar tracking system with that from the stationary solar panel. The angle of the solar panel from the solar tracking system is positioned at a constant altitude angle, 15 degrees, facing south, and the moving part was the azimuth, which follows the position of the sun. Latitude and longitude coordinates are identified by an Arduino UNO R3 microcontroller board for processing data, reading coordinates of the sun’s angle degrees from the SD card module, and commanding the servo motor to rotate to adjust the angle of the solar panel in a position perpendicular to the sun. Results from the experiment were collected in October 2020 from 9 AM to 4 PM. The system changed the angle degree every 30 minutes. It is found that the solar tracking system can easily be created and controlled, and can also accurately follow the sun’s position all day long. Moreover, it can generate more electric power than that generated by the stationary solar panel by up to 15%. The system is applicable and can generate more electric power than other tracking systems, although the results were collected during the rainy season when the weather was generally cloudy and rainy throughout the month.


Author(s):  
Małgorzata Pawlak ◽  
Michał Kuźniar ◽  
Andrzej R. Majka

The present-day world is characterized by the intense development of air transport. However, along with it, significant problems appear. Among these problems, the most important are those relating to safety and negative impact of air transport on the environment. Air transport efficiency and profitability issues, although not critical, must also be taken into account because they decide about the intensity of development of this branch of transport. There are currently two large programs in Europe oriented at improving safety, environmental, and efficiency indicators. These are SESAR 2020 and Clean Sky 2, being a continuation of previous ones. One of the ways to reduce negative impact of air transport on the environment and improve its efficiency is to reduce fuel consumption and pollutants emissions resulting from fuel combustion. To find solutions with the abovementioned features, it is necessary to have sufficiently accurate models to estimate the amount of fuel consumed and the amount of pollutants emitted. Developing a sufficiently accurate model to determine fuel consumption and pollutants emission was performed. Due to the specificity of the missions carried out by passenger aircraft, the focus was on the cruise stage when aircraft flies at a constant altitude with a constant air speed. The result of the analysis was the development of methodology for fuel consumption and emission of main pollutants in cruise conditions. Specific fuel consumption is calculated for the thrust required for horizontal flight at cruising altitude. Emission indexes for CO, NOx, HC, and CO2 for the cruise have been determined based on known indexes for the landing and take-off cycle phase, after applying appropriate corrections. An illustration of the application of the developed methodology was the optimization of a medium-sized transport aircraft trajectory on a selected connection to determine a trajectory characterized by a minimum emission value taking into account weather conditions.


2021 ◽  
Vol 14 (4) ◽  
pp. 2635-2648
Author(s):  
Lars E. Kalnajs ◽  
Sean M. Davis ◽  
J. Douglas Goetz ◽  
Terry Deshler ◽  
Sergey Khaykin ◽  
...  

Abstract. The tropical tropopause layer (TTL; 14–18.5 km) is the gateway for most air entering the stratosphere, and therefore processes within this layer have an outsized influence in determining global stratospheric ozone and water vapor concentrations. Despite the importance of this layer there are few in situ measurements with the necessary detail to resolve the fine-scale processes within this region. Here, we introduce a novel platform for high-resolution in situ profiling that lowers and retracts a suspended instrument package beneath drifting long-duration balloons in the tropics. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution. The instrument system integrates proven sensors for water vapor, temperature, pressure, and cloud and aerosol particles with an innovative mechanical reeling and control system. A technical evaluation of the system performance demonstrated the feasibility of this new measurement platform for future missions with minor modifications. Six instruments planned for two upcoming field campaigns are expected to provide over 4000 profiles through the TTL, quadrupling the number of high-resolution aircraft and balloon profiles collected to date. These and future measurements will provide the necessary resolution to diagnose the importance of competing mechanisms for the transport of water vapor across the TTL.


2021 ◽  
Author(s):  
Giancarlo Tamburello ◽  
Enrica Marotta ◽  
Pasquale Belviso ◽  
Gala Avvisati ◽  
Tullio Ricci ◽  
...  

<p>The fumarolic field of Pisciarelli is the most active vent of the Campi Flegrei caldera, a volcano in the metropolitan area of Naples (Italy) in a current state of unrest. Recent studies have identified a clear escalation of degassing activity at Pisciarelli since 2012, raising concern on a possible acceleration of the unrest. The absence of sulfur dioxide prevents UV spectroscopy from determining the volcanic gas flux, and researchers have tried alternative techniques for measuring CO<sub>2</sub> and H<sub>2</sub>S fluxes. Here we report observations of CO<sub>2</sub>, H<sub>2</sub>S, and H<sub>2</sub>O concentrations in the plume of Pisciarelli derived on December 2019 and October 2020 with a hexacopter drone equipped with miniaturized diffusive gas sensors. The drone flew at a constant altitude (~50 m above ground level), transecting the gas plume multiple times. This technique allowed us to calculate the CO<sub>2</sub>, H<sub>2</sub>S, and H<sub>2</sub>O gas fluxes by combining the georeferenced gas concentrations with the plume vertical rising speed derived from thermal and visible camera footages. Similar to previous gas composition and flux measurements, our results suggest that gas-sensors-equipped drones are a cost-effective technique for monitoring gas fluxes on active volcanoes, where UV spectroscopy cannot be used, and that can be made from safe distances.</p>


2021 ◽  
Author(s):  
Emmanuel Riviere ◽  
Mélanie Ghysels ◽  
Georges Durry ◽  
Jérémie Burgalat ◽  
Nadir Amarouche ◽  
...  

<p>STRATEOLE 2 is a French-American project based on superpressure balloon borne measurements to study dynamics and processes in the TTL and the lower stratosphere of equatorial regions. One single flight of these balloons (of a duration of about 80 days) can make several turns of the Earth.</p><p>Here we present water vapour measurements by the Pico-SDLA infrared laser spectrometer on-board the TTL 2 gondola. The float altitude was of about 19 km during the technical campaign of STRATEOLE 2, providing measurements at the top of the TTL or the lower stratosphere. In this presentation, we analyse the tape recorder signal at a constant altitude during the 80 days of flight. We compute an anomaly of the <em>in situ</em> water vapour measurements with respect to a regional/temporal satellite-borne mean climatology from Aura MLS. It allows to analyse the local measurements by Pico-SDLA with respect to what is expected at a given position and a given time. The obtained contrast allows the positioning of observations with respect to local climatology and therefore, the identification of singular events responsible for modulation of the local water vapour content. Our analysis shows that a long wet anomaly above the Pacific Ocean is explained by the balloon “surfing” on a warm perturbation of a Kelvin wave. Concurrently, a dry anomaly is put to the fore over the Indian Ocean, associated to a packet of gravity waves cold perturbations. The balloon has flown twice above the Maritime Continent. For each passage, a short scale succession of dry and wet anomalies is shown, indicating a possible influence of local deep convection. This influence is studied further using satellite borne cloud top data.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 390
Author(s):  
Sergio Fernandez Romero ◽  
Pablo Morata Barrado ◽  
Miguel Angel Rivero Rodriguez ◽  
Gustavo Adolfo Vazquez Yañez ◽  
Eduardo De Diego Custodio ◽  
...  

Geomagnetic prospection is an efficient and environmentally friendly geophysical method for the analysis of the magnetic minerals’ distribution in the subsurface. High-resolution measurements require on-ground campaigns. However, these activities might imply high costs, risk and time consumption. Some more recent works have started to use magnetometers on-board remote piloted aircrafts. Normally, they fly at a constant altitude and use scalar probes. This configuration permits the determination of the magnitude of the magnetic field but not the direction, and requires advanced techniques for in-depth interpretation of the sources. In this manuscript, we describe the accommodation of a system for vector magnetometry in a drone whose flight altitude follows the elevation of the terrain. This singularity improves the capability of interpretation, including constraints in dating due to the record of the geomagnetic field. The work consists of the design, development and implementation of a solidary payload system anchored to the body of the platform in order to determine the vector magnetic field. It describes the details of the system and the performance characteristics obtained after the calibration, as well as its demonstration via a field campaign in the spatter deposits of Cerro Gordo volcano in Campos de Calatrava volcanic province in Spain.


2020 ◽  
Vol 21 (1) ◽  
pp. 13-21
Author(s):  
Nayla Alvina Rahma ◽  
Jaka Anugrah Ivanda Paski

Penelitian ini bertujuan untuk mengetahui perbedaan hasil prediksi hujan WRF-3DVAR asimilasi data radar dengan menggunakan teknik warm start (spin-up 12 jam) dan cold start (tanpa spin-up). Kejadian hujan yang dianalisis adalah kejadian hujan lebat tanggal 19-20 Januari 2019 di wilayah Surabaya dan sekitarnya. Data yang digunakan untuk simulasi adalah data Global Forescast System (GFS) dan data reflektivitas radar cuaca BMKG Surabaya produk Constant Altitude Plan Position Indicator (CAPPI). Analisis dilakukan dengan membandingan kondisi awal model pada parameter suhu dan kelembaban udara untuk mengetahui efek dari metode asimilasi data. Uji keandalan model dilakukan dengan melakukan verifikasi dikotomi (hujan/tidak hujan) hasil luaran model WRF dengan data hujan di 4 titik pengamatan, yaitu di Stasiun meteorologi Juanda, Stasiun meteorologi Perak, Stasiun Klimatologi Karangploso, dan Stasiun Geofisika Tretes. Hasil menunjukkan bahwa asimilasi data radar dengan mode cold start mempunyai hasil yang lebih baik dibandingkan dengan warm start, yang ditandai dengan lebih tingginya nilai Probability of Detection (POD) dan lebih rendahnya False Alarm Ratio (FAR). Asimilasi data dengan menggunakan mode cold start memiliki performa yang lebih baik dalam mendeteksi curah hujan per jam dengan ambang batas >1 mm dan >5 mm, sedangkan curah hujan >10 mm per jam lebih baik diprediksi menggunakan mode warm start.


2020 ◽  
Author(s):  
Lars E. Kalnajs ◽  
Sean M. Davis ◽  
J. Douglas Goetz ◽  
Terry Deshler ◽  
Sergey Khaykin ◽  
...  

Abstract. The Tropical Tropopause Layer (14–18.5 km) is the gateway for most air entering the stratosphere, and therefore processes within this layer have an outsized influence in determining global stratospheric ozone and water vapor concentrations. Despite the importance of this layer there are few in situ measurements with the necessary detail to resolve the fine scale processes within this region. Here, we introduce a novel platform for high resolution in situ profiling that lowers and retracts a suspended instrument package beneath drifting long duration balloons in the tropics. During a 100-day circumtropical flight, the instrument collected over 100 two-kilometer profiles of temperature, water vapor and aerosol at one-meter resolution, yielding unprecedented geographic sampling and vertical resolution. The instrument system integrates proven sensors for water vapor, temperature, pressure and cloud and aerosol particles with an innovative mechanical reeling and control system. A technical evaluation of the system performance demonstrated the feasibility of this new measurement platform for future missions with minor modifications. Six instruments planned for two upcoming field campaigns are expected to provide over 4000 profiles through the TTL, quadrupling the number of high-resolution aircraft and balloon profiles collected to date. These and future measurements will provide the necessary resolution to diagnose the importance of competing mechanisms for the transport of water vapor across the TTL.


Author(s):  
Radu I Dancila ◽  
Ruxandra M Botez

This article presents a new method for storing and computing the atmospheric data used in time-critical flight trajectory performance prediction calculations, such as flight performance prediction calculations in flight management systems and/or flight trajectory optimization, of constant altitude cruise segments. The proposed model is constructed based on the forecast data provided by Meteorological Service Agencies, in a GRIB2 data file format, and the set of waypoints that define the lateral component of the evaluated flight profile(s). The atmospheric data model can be constructed/updated in the background or off-line, when new atmospheric prediction data are available, and subsequently used in the flight performance computations. The results obtained using the proposed model show that, on average, the atmospheric parameter values are computed six times faster than through 4D linear interpolations, while yielding identical results (value differences of the order of 10e−14). When used in flight trajectory performance calculations, the obtained results show that the proposed model conducts to significant computation time improvements. The proposed model can be extended to define the atmospheric data for a set of cruise levels (usually multiple of 1000 ft).


Sign in / Sign up

Export Citation Format

Share Document