novel target
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 695-700
Xiumei He ◽  
Xiong Zhou ◽  
Yueyue Feng

This study intends to identify the expression profiles of micoRNAs during the recovery of damaged corneal epithelium induced by BMSCs. Differential expressions of miRNA after damage of corneal epithelium stimulated by BMSCs were analyzed based on micro-array and validated by qRT-PCR. The miRNA’s effect on cell proliferative and apoptotic activity was evaluated through transfection of plasmid with over presentation of miRNA and inhibitor of miRNA. miR-339 was significantly down-regulated in the process of recovery of the damaged corneal epithelium induced by BMSCs. Importin 13 and EGF expression was reduced after transfection of plasmid with over presentation of miR-339, which were reversed by transfection of the inhibitor of miR-339. Importin 13 was a target of miR-339. The cell proliferation and apoptosis could be restrained by miR-339 through regulation of the expression of Importin 13. In conclusion, the damaged corneal epithelium induced by BMSCs could be recovered by miR-339 through restraining Importin 13 expression, indicating that it might be a novel target for amelioration of corneal epithelium damage.

2022 ◽  
Vol 12 (4) ◽  
pp. 763-769
Liang Yu ◽  
Sheng Zhang ◽  
Wei He

microRNA-136 can inhibit the proliferating activity of malignant cells and also participate in chemotherapy resistance of colorectal cancer via modulating HDAC1. This study assessed miR-136’s effect on NSCLC cell proliferation and underlying mechanisms. Tumor tissues and paracancerous tissues from NSCLC patients were collected to measure miR-136 and HDAC1 level. Cells were transfected with miR-136-mimics, miR-136-inhibitors or miR-136 mimics+HDAC1-OE followed by analysis of cell viability and apoptosis by CCK-8 method and flow cytometry, phosphorylation of Jak2/STAT3 by western blot. miR-136 was significantly downregulated in tumor tissues and NSCLC cells, accompanied by upregulated HDAC1. miR-136 overexpression suppressed HDAC1 expression, retarded phosphorylation and activation of Jak2/STAT3 signaling, reduced NSCLC cell viability and enhanced apoptosis. In addition, co-transfection of miR-136-mimics and HDAC1-OE reversed the inhibitory effects of miR-136 on NSCLC cells. In conclusion, miR-136 is reduced and HDAC1 is increased in NSCLC and miR-136 overexpression inhibited NSCLC cell proliferation and increased apoptosis possibly through regulating HDAC1/Jak2/STAT3 signal pathway, indicating that miR-136 might be a novel target for the treatment of NSCLC.

2022 ◽  
Vol 12 (5) ◽  
pp. 920-925
He Bai ◽  
Jian He

The BMSCs are one of the components of tumor micro-environment and participate in tumor evolution. Our study aimed to discuss the effect of exosome derived from BMSC on gastric cancer cells. Tumor and para-tumor tissues were isolated to measure miR-206 level by RT-PCR. Gastric cancer cell behaviors were analyzed using MTT assay and scratch test. Gastric cancer model was established and treated TIGIT inhibitor to assess its role in the tumor growth in vivo. The miR-206 in exosome from BMSCs in cancer tissue was detected. CD8 expression excreted by DC could be induced after miR-206 treatment possibly through regulating the signaling pathway of TIGIT/PVR. Inhibition of TIGIT decreased tumor growth, development and reversed tumor phenotype. In conclusion, miR-206 derived from BMSCs induces CD8 expression in gastric cancer through regulating the signaling pathway of TIGIT/PVR, indicating that it might be a novel target for the treatment of gastric cancer.

2022 ◽  
Vol 14 (1) ◽  
Xin Wang ◽  
Ya-li Wu ◽  
Yuan-yuan Zhang ◽  
Jing Ke ◽  
Zong-wei Wang ◽  

Abstract Background AK098656 may be an adverse factor for coronary heart disease (CHD), especially in patients with hypertension. This study aimed to analyze the effect of AK098656 on CHD and CHD with various complications. Methods A total of 117 CHD patients and 27 healthy control subjects were enrolled in the study. Plasma AK098656 expression was determined using the quantitative real-time polymerase chain reaction. Student’s t-test was used to compare AK098656 expression levels in different groups. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to quantify the discrimination ability between CHD patients and health controls and between CHD and CHD + complications patients. The relationship between AK098656 and coronary stenosis was analyzed using Spearman’s correlation. Results AK098656 expression was remarkably higher in CHD patients than in healthy controls (P = 0.03). The ROC curve revealed an effective predictive AK098656 expression value for CHD risk, with an AUC of 0.656 (95% CI 0.501–0.809). Moreover, AK098656 expression was increased in CHD + complications patients compared to CHD patients alone (P = 0.005), especially in patients with hypertension (CHD + hHTN, P = 0.030). The ROC curve revealed a predictive AK098656 prognostic value for discriminating between CHD and CHD + hHTN patients, with an AUC of 0.666 (95% CI 0.528–0.805). There was no significant difference in AK098656 expression in CHD patients with diabetes mellitus compared to CHD patients alone. In addition, AK098656 expression in CHD patients was positively correlated with stenosis severity (R = 0.261, P = 0.006). Conclusion AK098656 expression was significantly increased in patients with CHD, especially those with hypertension, and its expression level was positively correlated with the degree of coronary stenosis. This implied that AK098656 may be a risk factor for CHD and can potentially be applied in clinical diagnosis or provide a novel target for treatment.

Mukesh Kumar ◽  
Manish Kumar Tripathi ◽  
Deepali Gupta ◽  
Sanjit Kumar ◽  
Nihar Ranjan Biswas ◽  

2022 ◽  
Jiangnan Huang ◽  
Yumei Li ◽  
Zhiyuan Jiang ◽  
Lingjun Wu ◽  
Yueying Liu ◽  

Purpose: Our previous data indicated that miR‑24-3p is involved in the regulation of vascular endothelial cell proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of IL-1β in hypoxic HUVECs. Methods: We assessed the mRNA expression levels of miR-24-3p, HIF1A and NKAP by RT-qPCR. ELISA measured the expression level of IL-1β. CCK-8 assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p. Results: We demonstrated that in AMI patient blood samples, the expression of miR-24-3p is downregulated, the expression of IL-1β or NKAP is upregulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by downregulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NF-kappa-B-activating protein (NKAP) is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-kB/pro-IL-1β signaling pathway. However, IL‑1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF‑κB pathway. In conclusion, our results reveal a new function of IL‑1β in suppressing miR-24-3p upregulation of the NKAP/NF-kB pathway.

2022 ◽  
Vol 22 (1) ◽  
Yiming Xu ◽  
Dandan Lv ◽  
Chao Yan ◽  
Hua Su ◽  
Xue Zhang ◽  

Abstract Background N6-methyladenosine (m6A) has emerged as a significant regulator of the progress of various cancers. However, its role in lung adenocarcinoma (LUAD) remains unclear. Here, we explored the biological function and underlying mechanism of methyltransferase-like 3 (METTL3), the main catalyst of m6A, in LUAD progression. Methods The expression of m6A, METTL3, YTHDF1 and SLC7A11 were detected by immunochemistry or/and online datasets in LUAD patients. The effects of METTL3 on LUAD cell proliferation, apoptosis and ferroptosis were assessed through in vitro loss-and gain-of-function experiments. The in vivo effect on tumorigenesis of METTL3 was evaluated using the LUAD cell xenograft mouse model. MeRIP-seq, RNA immunoprecipitation and RNA stability assay were conducted to explore the molecular mechanism of METTL3 in LUAD. Results The results showed that the m6A level, as well as the methylase METTL3 were both significantly elevated in LUAD patients and lung cancer cells. Functionally, we found that METTL3 could promote proliferation and inhibit ferroptosis in different LUAD cell models, while METTL3 knockdown suppressed LUAD growth in cell-derived xenografts. Mechanistically, solute carrier 7A11 (SLC7A11), the subunit of system Xc−, was identified as the direct target of METTL3 by mRNA-seq and MeRIP-seq. METTL3-mediated m6A modification could stabilize SLC7A11 mRNA and promote its translation, thus promoting LUAD cell proliferation and inhibiting cell ferroptosis, a novel form of programmed cell death. Additionally, we demonstrated that YTHDF1, a m6A reader, was recruited by METTL3 to enhance SLC7A11 m6A modification. Moreover, the expression of YTHDF1 and SLC7A11 were positively correlated with METTL3 and m6A in LUAD tissues. Conclusions These findings reinforced the oncogenic role of METTL3 in LUAD progression and revealed its underlying correlation with cancer cell ferroptosis; these findings also indicate that METTL3 is a promising novel target in LUAD diagnosis and therapy.

Tal Flieswasser ◽  
Astrid Van den Eynde ◽  
Jonas Van Audenaerde ◽  
Jorrit De Waele ◽  
Filip Lardon ◽  

AbstractThe immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70.In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.

2022 ◽  
Vol 12 ◽  
Kang Wu ◽  
Jun Zeng ◽  
Xulian Shi ◽  
Jiajia Xie ◽  
Yuqing Li ◽  

Bladder cancer is a highly metastatic tumor and one of the most common malignancies originating in the urinary tract. Despite the efficacy of immune checkpoints, including programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the effect of immunotherapy for bladder cancer remains unsatisfactory. Therefore, it is urgent to develop new targets to expand immunotherapeutic options. In this study, we utilized single-cell sequencing to explore the cell composition of tumors and detected a subset of Treg cells with high expression of T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and interleukin (IL)-32. The antitumor immune response was suppressed by this subset of Treg cells, while IL-32 promoted bladder cancer metastasis. Nevertheless, targeting TIGIT not only reversed immunosuppression by restoring the antitumor immune response mediated by T cells but also suppressed the secretion of IL-32 and inhibited the metastasis of bladder cancer cells. Thus, our study provided novel insights into immunosuppression in bladder cancer and highlighted TIGIT as a novel target for immunotherapy of bladder cancer. We also illustrated the mechanism of the dual effect of targeting TIGIT and revealed the metastasis-promoting effect of IL-32 in bladder cancer. Collectively, these findings raise the possibility of utilizing TIGIT as a target against bladder cancer from the bench to the bedside.

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 172
Giulia Peppino ◽  
Federica Riccardo ◽  
Maddalena Arigoni ◽  
Elisabetta Bolli ◽  
Giuseppina Barutello ◽  

Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells’ migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4′s role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.

Sign in / Sign up

Export Citation Format

Share Document