matrix differential
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 48)

H-INDEX

24
(FIVE YEARS 4)

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2262
Author(s):  
Emilio Defez ◽  
Javier Ibáñez ◽  
José M. Alonso ◽  
Michael M. Tung ◽  
Teresa Real-Herráiz

Matrix differential equations are at the heart of many science and engineering problems. In this paper, a procedure based on higher-order matrix splines is proposed to provide the approximated numerical solution of special nonlinear third-order matrix differential equations, having the form Y(3)(x)=f(x,Y(x)). Some numerical test problems are also included, whose solutions are computed by our method.


Author(s):  
J. Vasundhara Devi ◽  
Sadashiv G. Deo ◽  
Ramakrishna Khandeparkar

2021 ◽  
Vol 69 ◽  
pp. 102815
Author(s):  
Muaz Iqbal ◽  
Shamim Khan ◽  
Banat Gul ◽  
Manzoor Ahmad ◽  
Iftikhar Ahmad

2021 ◽  
Vol 25 (2(36)) ◽  
pp. 7-25
Author(s):  
A. A. Fesenko ◽  
K. S. Bondarenko

The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a dynamic normal compressive load acts on the other along a rectangular section at the initial moment of time. Integral Laplace and Fourier transforms are applied sequentially to the equations of motion and boundary conditions in contrast to traditional approaches when integral transforms are applied to solutions' representations through harmonic functions. This leads to a one-dimensional vector homogeneous boundary value problem with respect to unknown displacement's transformants. The problem was solved using matrix differential calculus. The original displacement field was found after applying inverse integral transforms. For the case of stationary vibrations a method of calculating integrals in the solution in the near loading zone was indicated. For the analysis of oscillations in a remote zone the asymptotic formulas were constructed. The amplitude of vertical vibrations was investigated depending on the shape of the load section, natural frequencies of vibrations and the material of the medium.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 95-102
Author(s):  
S. A. Shchogolev ◽  
V. V. Karapetrov

In the mathematical description of various phenomena and processes that arise in mathematical physics, electrical engineering, economics, one has to deal with matrix differential equations. Therefore, these equations are relevant both for mathematicians and for specialists in other areas of natural science. Many studies are devoted to them, in which the solvability of matrix equations in various function spaces, boundary value problems for matrix differential equations, and other problems were investigated. In this article, a quasilinear matrix equation is considered, the coefficients of which can be represented in the form of absolutely and uniformly converging Fourier series with coefficients and frequency slowly varying in a certain sense. The problem is posed of obtaining sufficient conditions for the existence of particular solutions of a similar structure for the equation under consideration. For this purpose, the corresponding linear equation is considered first. It is written down in component-wise form, and, based on the assumptions made, the existence of the only particular solution of the specified structure is proved. Then, using the method of successive approximations and the principle of contracting mappings, the existence of a unique particular solution of the indicated structure for the original quasilinear equation are proved.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lukas T. Rotkopf ◽  
Eckhard Wehrse ◽  
Heinz-Peter Schlemmer ◽  
Christian H. Ziener

In NMR or MRI, the measured signal is a function of the accumulated magnetization phase inside the measurement voxel, which itself depends on microstructural tissue parameters. Usually the phase distribution is assumed to be Gaussian and higher-order moments are neglected. Under this assumption, only the x-component of the total magnetization can be described correctly, and information about the local magnetization and the y-component of the total magnetization is lost. The Gaussian Local Phase (GLP) approximation overcomes these limitations by considering the distribution of the local phase in terms of a cumulant expansion. We derive the cumulants for a cylindrical muscle tissue model and show that an efficient numerical implementation of these terms is possible by writing their definitions as matrix differential equations. We demonstrate that the GLP approximation with two cumulants included has a better fit to the true magnetization than all the other options considered. It is able to capture both oscillatory and dampening behavior for different diffusion strengths. In addition, the introduced method can possibly be extended for models for which no explicit analytical solution for the magnetization behavior exists, such as spherical magnetic perturbers.


Author(s):  
Gianluca Ceruti ◽  
Christian Lubich

AbstractWe propose and analyse a numerical integrator that computes a low-rank approximation to large time-dependent matrices that are either given explicitly via their increments or are the unknown solution to a matrix differential equation. Furthermore, the integrator is extended to the approximation of time-dependent tensors by Tucker tensors of fixed multilinear rank. The proposed low-rank integrator is different from the known projector-splitting integrator for dynamical low-rank approximation, but it retains the important robustness to small singular values that has so far been known only for the projector-splitting integrator. The new integrator also offers some potential advantages over the projector-splitting integrator: It avoids the backward time integration substep of the projector-splitting integrator, which is a potentially unstable substep for dissipative problems. It offers more parallelism, and it preserves symmetry or anti-symmetry of the matrix or tensor when the differential equation does. Numerical experiments illustrate the behaviour of the proposed integrator.


Sign in / Sign up

Export Citation Format

Share Document