ground surface settlement
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 45)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jian Lu ◽  
Jingjing Sun ◽  
Yang Shen ◽  
Wei Zheng ◽  
Aijun Yao ◽  
...  

UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 158
Author(s):  
Wirman Hidayat

Lateral supports, including walls and bracing systems on deep excavation, are generally required to prevent excessive horizontal wall movement and ground surface settlement which can cause damage to the excavation construction itself and adjacent structures. These criteria are influenced by the stiffness of the excavation system, including the spacing of vertical and horizontal supports (struts). This paper presents the parametric study using the variation of struts spacing in the vertical and horizontal direction to analyze the influence on horizontal wall movement and ground surface settlement. The analysis was carried out using finite element software, PLAXIS performed in 2D plain strain and 3D. This study shows that struts spacing in the horizontal and vertical direction is equally important and equally significant on the deformation that occurs with a maximum difference of about 0.06%. The maximum horizontal wall movement ratio computed by 3D analysis to the 2D analysis is defined as plain strain ratio (PSR). The PSR value decreases when the system stiffness is decreased. Meanwhile, when the system stiffness was higher, the PSR value will be higher and closer to 1, showing that the difference in the 3D and 2D models is relatively small.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2117
Author(s):  
Keke Li ◽  
Wenyuan Xu ◽  
Liang Yang

The deformation characteristics of a raised and widened old Chinese roadway on a soft soil foundation are investigated in this study via finite element numerical simulation. The rules of ground surface settlement, slope foot lateral displacement, and ground surface settlement evolution of the roadbed under three modes (one-time construction of an eight-lane expressway, widened four-lane expressway, and raised/widened four-lane expressway) are compared. The ground surface settlement process of the eight-lane road foundation, which is formed by first widening and then raising the road, is highly complex. The ground surface settlement curve under the old road foundation increases and then decreases. The lateral displacement of the slope foot also interacts with the widening and raising of the eight-lane roadbed foundation. The range of lateral displacement is 70.05, 42.58, 124.81, 104.54 mm. Fifteen years after construction, the total settlement of the raised and widened roadbed is much larger than that of the one built directly. The total settlement values at the center of the two roadbeds are 297.05 and 234.85 mm, respectively. This manuscript provides data support for the reconstruction and expansion of roads on soft soil foundations, for choosing appropriate construction methods to build roads, and for avoiding major road damage, which is of great significance to the construction of road infrastructure in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kan Huang ◽  
Yiwei Sun ◽  
Xianqiang Huang ◽  
Yujian Li ◽  
Meng Jiang ◽  
...  

Shield tunneling activities inevitably pass through pile foundations at close distance in densely urban areas. Various studies have investigated the interaction between newly constructed tunnels and existing pile foundations. However, the influence of different construction sequences of twin paralleled shield tunneling on single long pile is seldom considered. A case was found in the project of Changsha Metro Line 5, where the twin paralleled tunnels were constructed near the Wanjiali Viaduct piles. A three-dimensional finite element model was established to analyze the pier settlement, ground surface settlement trough, and the vertical and horizontal displacement of pile under different construction sequences in layered soil. The results show that the adjacent pile and surrounding environment are affected substantially with the change of construction sequence of twin paralleled tunnels. The construction sequence of condition (b), in which the tunnel closer to the pile foundation is first constructed and then the tunnel farther away from the pile foundation is second constructed, can reduce the settlement of pier by 13.1%, the maximum surface settlement by 7.0%, the maximum vertical displacement of pile foundation by 7.9%, and the maximum horizontal displacement by 6.9%. The present findings can provide reference for similar projects.


2021 ◽  
Author(s):  
Yiran Yang ◽  
Xingping Lai ◽  
Tao Luo ◽  
Kekuo Yuan ◽  
Feiyong Wang

Abstract Mining causes environmental hazards which have an adverse effect on ecological system and human living environment. Rock is the main body of underground coal mining, and among them stratified siltstone is very common. Creep and instability of underground stratified siltstone is one of the main inducing factors of ground fissures and ground surface settlement. In this study, on the basis of fully considering its stratified structure features, we built and theoretically analyzed the viscoelastic-viscoplastic constitutive model of stratified siltstone. Creep tests and numerical simulation under multi-stress were conducted. Numerical simulation results under high, medium and low stress were consistent with the creep test results, it made up for the deficiency of traditional creep models in predicting plastic deformation at low stress level. Numerical simulation results showed that under different boundary conditions, the proposed model had advantage to more accurately simulate creep behavior of stratified siltstone compared with traditional models. Also, the numerical simulation results reveled creep characteristics of underground roadway surrounding rock, based on which a supporting scheme was put forward. In the stress adjustment stage, the strain rate dropped significantly from 14.6mm/d to 10.3mm/d. Then, it entered the deceleration creep stage. Creep of roadway surrounding rock and ground surface settlement stopped. The environmental hazards were solved to a great extent.


2021 ◽  
Author(s):  
Ali Kazempour Osalou ◽  
sayfoddin moosazadeh ◽  
Ali Nouri Qarahasanlou

Abstract Nowadays, tunnel excavation plays a major role in development of countries. Due to the complex and challenging ground conditions, a comprehensive study and analysis must be done before, during and also after the excavation of tunnels. Hence, the importance of study and evaluation of ground settlement are dramatically increased, since many tunnel projects are performed in the urban areas where there are plenty of constructions, buildings and facilities. For this reason, the control and prediction of ground settlement is one of the complicated topic in the fields of risk engineering. Therefore, in this paper, proportional hazard model (PHM) is used to analyze and study the ground settlement induced by Tabriz Metro Line 2 (TML2) tunneling. The PHM method is a semi-parametric regression method that can enter environmental conditions or factors affecting settlement probability. These influential factors are used as risk factors in the analysis. After establishing a database for a case study and using proportional hazard model for surface settlement analysis, and then, by evaluating the effect of environmental conditions on the ground surface settlement, it has been found that the risk factors of grouting pressure behind the segment, the ratio of tunnel depth to groundwater level, and drained cohesion strength at a significant level of 5% have a direct effect on the probability of settlement. The results also showed that the effect of grout injection pressure on ground subsidence is more than other parameters, and with increasing injection pressure, the probability of exceeding safe subsidence values decreases. In addition, it has been found that increasing the risk factor for the ratio of tunnel depth to groundwater level reduces the probability of exceeding the safe ground settlement. Finally, increasing the number of risk factors for drained cohesion strength increases the probability of exceeding safe settlement.


Sign in / Sign up

Export Citation Format

Share Document