vibrio pathogens
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 932
Author(s):  
Ayodeji C. Osunla ◽  
Oluwatayo E. Abioye ◽  
Anthony I. Okoh

Treated sewage harbours pathogenic microbes, such as enteric bacteria and protozoa, are capable of causing several diseases. Some of these are emerging pathogens sometimes recovered in the absence of common water quality indicator organisms. The possibility of selected treatments plants serving as momentary reservoirs of Vibrio pathogens during a non-outbreak period was assessed. The occurrence and diversity of Vibrio pathogens were monitored for one year (December 2016 to November 2017) in the treated effluents and upstream and downstream areas of the receiving water bodies of two wastewater treatment plants (WWTPs), designated AL and TS. Physicochemical parameters of TS and AL WWTPs’ water samples were analysed using a multi-parameter meter (Hanna, model HI 9828, Padova, Italy) and a turbidimeter (HACH, model 2100P, Johannesburg, South Africa). Water samples were augmented with alkaline peptone water and cultured on thiosulfate citrate bile salts sucrose agar at 37 °C for 24 h. The recovered probable pathogens were confirmed via PCR amplification, using primers specific for Vibrio species of public health significance. The distribution of Vibrio species positively and significantly (p < 0.01) correlated with turbidity (r = 0.630), temperature (r = 0.615), dissolved oxygen (r = 0.615), pH (r = 0.607), biological oxygen demand (r = 0.573), total dissolved solid (r = 0.543), total suspended solid (r = 0.511), electrical conductivity (r = 0.499), residual chlorine (r = 0.463) and salinity (r = 0.459). The densities of Vibrio species were found to be significantly higher (p < 0.05) in effluents from both AL and TS WWTPs than upstream and downstream of the receiving rivers across the sampling regime. Furthermore, the maximum Vibrio species density across the sampling regime were observed during the warmer Summer and Spring season. Moreover, six medically important Vibrio species were detected in the water samples, indicating that the methods employed were efficient in revealing that WWTPs are potential reservoirs of Vibrio pathogens, which could pose a substantial public health risk if the receiving water is used for domestic purposes. Our findings further strengthen existing calls for the inclusion of emerging bacterial pathogens, including Vibrio species, as water quality indicators by the South African Department of Water Affairs. Hence, we recommend regular monitoring of treated effluents and receiving water bodies to ensure early control of potential outbreaks of vibriosis and cholera.


Author(s):  
Hey-Min Choi ◽  
Min-Kyu Kim ◽  
Hyun Yang

Recently, abnormally high water temperature (AHWT) phenomena are occurring more often due to the global warming and its impact. These phenomena have damaged extensively to the maritime economy around the southern coast of Korea and caused an illness by exacerbating the propagation of Vibrio pathogens. To mitigate damages by AHWT phenomena, it is necessary to respond as quickly as possible or predict them in advance. In this study, therefore, we proposed a deep learning-based methodology to predict the occurrences of AHWT phenomena using the long short-term memory (LSTM) model. First, a LSTM model was trained using the satellite-derived water temperature data over the past ten years. Then, the water temperatures after a few days were estimated using the trained LSTM model. In a performance evaluation, when estimating water temperatures after one-day, the model achieved results of 1.865 and 0.412 in terms of mean absolute percentage error (MAPE) and root mean square error (RMSE), respectively. Second, we developed a decision algorithm based on the Markov state transition in order to predict the AHWT occurrence probability. As a result, we obtained 0.88 of F1 score for predicting AHWT phenomena after 1 day in case of the southern coast of Korea.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Choto Phares ◽  
Charles Fedrick ◽  
Gwekwe Blessing ◽  
Li Yingjie ◽  
Akida Jamal S ◽  
...  

2019 ◽  
Vol 11 (23) ◽  
pp. 2763 ◽  
Author(s):  
Racault ◽  
Abdulaziz ◽  
George ◽  
Menon ◽  
C ◽  
...  

The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).


Author(s):  
Pallaval Veera Bramhachari ◽  
A. M. V. N. Prathyusha ◽  
Ganugula Mohana Sheela ◽  
Neelapu Nageswara Rao Reddy ◽  
Chanda Vikrant Berde ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Diliana Pérez-Reytor ◽  
Victor Jaña ◽  
Leonardo Pavez ◽  
Paola Navarrete ◽  
Katherine García

2016 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R Siddiqui ◽  
MM Alam ◽  
MN Naser ◽  
Y Otomo ◽  
M Yasmin ◽  
...  

Vibrio alginolyticus has been thought to be a halophilic marine bacterium that causes diarrhea, otitis media and wound infection through the consumption of raw or inappropriately cooked sea food. It is one of the main Vibrio pathogens affecting marine animals, such as marine fish, shrimp and shellfish which lead to large economic damage. Although there are reports on the presence of this organism in the coastal area of other countries, not so much work has been done on the isolation and characterization of this species in Bangladesh. The present study was, therefore, undertaken to isolate and characterize V. alginolyticus organisms isolated from the rivers (fresh water) and estuaries (brackish water) of Bangladesh. A total of 9 isolates of Vibrio species were obtained from different water bodies (three from Meghna river, two from Shangu river and four from estuary) and provisionally identified as Vibrio alginolyticus following standard biochemical tests. All these 9 strains showed same pattern of antibiotic resistance to ampicillin, streotomycin, penicillin, but sensitive to nalidixic acid. In the virulence properties test, two isolates showed positive results for toxR gene and none of the isolates showed positive results for tdh gene. Challenge experiments in Singhi fish (Heteropneustes fossi) with the live cells and the culture filtrate prepared from the V. alginolyticus showed high mortality of the fish population. All these studies suggest the presence of pathogenic V. alginolyticus strains in the river water and estuarine bodies of Bangladesh and the extracellular toxin(s) of the V. alginolyticus might be one of the causes for fish mortality.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 1-6


Sign in / Sign up

Export Citation Format

Share Document