separation of co2
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 85)

H-INDEX

50
(FIVE YEARS 6)

Author(s):  
Nicholas Schwartz ◽  
Jason Harrington ◽  
Kirk J Ziegler ◽  
Philip Cox

Abstract The direct electrochemically driven separation of CO2 from a humidified N2, O2, and CO2 gas mixture was conducted using an asymmetric membrane electrode assembly (MEA). The MEA was fabricated using a screen-printed ionomer bound Pt cathode, an anion exchange membrane (AEM), and ionomer bound IrO2 anode. Electrocatalyst materials were physically and chemically characterized prior to inclusion within the electrode. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) measurements using a rotating disk electrode (RDE) were used to quantify the catalytic activity and determine the effects of the catalyst-to-ionomer ratio. Catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface analysis, and (dynamic light scattering) DLS to evaluate catalyst structure, active surface area, and determine the particle size and bulk particle size distribution (PSD). The electrocatalyst layer of the electrodes were fabricated by screen printing a uniformly dispersed mixture of catalyst, dissolved anionic ionomer, and a solvent system onto an electrode supporting gas diffusion layer (GDL). Pt IrO2 MEAs were fabricated and current-voltage relationships were determined using constant-current measurements over a range of applied current densities and flow rates. Baseline reaction kinetics for CO2 separation were established with a standard set of Pt-IrO2 MEAs.


2022 ◽  
Author(s):  
Mian Wu ◽  
Xuehua Li ◽  
Xiaobing Li

Membrane separation of CO2 from high-temperature flue gas has economic benefits. Thus, the development of thermal-stable polymeric membranes with efficient permselectivity is very crucial. In this work, we designed a...


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Gabriele Clarizia ◽  
Paola Bernardo

An inspiring challenge for membrane scientists is to exceed the current materials’ performance while keeping the intrinsic processability of the polymers. Nanocomposites, as mixed-matrix membranes, represent a practicable response to this strongly felt need, since they combine the superior properties of inorganic fillers with the easy handling of the polymers. In the global strategy of containing the greenhouse effect by pursuing a model of sustainable growth, separations involving CO2 are some of the most pressing topics due to their implications in flue gas emission and natural gas upgrading. For this purpose, Pebax copolymers are being actively studied by virtue of a macromolecular structure that comprises specific groups that are capable of interacting with CO2, facilitating its transport with respect to other gas species. Interestingly, these copolymers show a high versatility in the incorporation of nanofillers, as proved by the large number of papers describing nanocomposite membranes based on Pebax for the separation of CO2. Since the field is advancing fast, this review will focus on the most recent progress (from the last 5 years), in order to provide the most up-to-date overview in this area. The most recent approaches for developing Pebax-based mixed-matrix membranes will be discussed, evidencing the most promising filler materials and analyzing the key-factors and the main aspects that are relevant in terms of achieving the best effectiveness of these multifaceted membranes for the development of innovative devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3348
Author(s):  
Yinji Wan ◽  
Yefan Miao ◽  
Tianjie Qiu ◽  
Dekai Kong ◽  
Yingxiao Wu ◽  
...  

Amine-functionalized metal-organic frameworks (MOFs) are a promising strategy for the high-efficiency capture and separation of CO2. In this work, by tuning the ratio of 1,3,5-benzenetricarboxylic acid (H3BTC) to 5-aminoisophthalic acid (5-NH2-H2IPA), we designed and synthesized a series of amine-functionalized highly stable Ti-based MOFs (named MIP-207-NH2-n, in which n represents 15%, 25%, 50%, 60%, and 100%). The structural analysis shows that the original framework of MIP-207 in the MIP-207-NH2-n (n = 15%, 25%, and 50%) composites remains intact when the mole ratio of ligand H3BTC to 5-NH2-H2IPA is less than 1 to 1 in the resulting MOFs. By the introduction of amino groups, MIP-207-NH2-25% demonstrates outstanding CO2 capture performance up to 3.96 and 2.91 mmol g−1, 20.7% and 43.3% higher than those of unmodified MIP-207 at 0 and 25 °C, respectively. Furthermore, the breakthrough experiment indicates that the dynamic CO2 adsorption capacity and CO2/N2 separation factors of MIP-207-NH2-25% are increased by about 25% and 15%, respectively. This work provides an additional strategy to construct amine-functionalized MOFs with the maintenance of the original MOF structure and a high performance of CO2 capture and separation.


Author(s):  
Anne Raquel Teixeira Cardoso ◽  
Alan Ambrosi ◽  
Marco Di Luccio ◽  
Dachamir Hotza

2021 ◽  
pp. 203-242
Author(s):  
N. Sazali

This chapter presents a critical overview of polymeric membrane applications for CO2/CH4 separation. Comparative summary of availability and practice of different gas separation methods are outlined to give a state-of-the-art view of this technology. Detailed discussions on polymer-based membranes are also discussed in this work, highlighting the mechanism of selective gas permeation through the membranes. Future direction is discussed for possible new experimental design to maximize the membrane performances in separation of CO2/CH4.


Sign in / Sign up

Export Citation Format

Share Document