alginate fibers
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7676
Author(s):  
Èlia Bosch-Rué ◽  
Leire Díez-Tercero ◽  
Raquel Rodriguez-Gonzalez ◽  
Román A Pérez

Bone has the intrinsic capacity to regenerate itself, as long as the damage is small, through the sequential stimulation of specific phases, such as angiogenesis followed by osteogenesis. However, when the damage is extensive it is unable to regenerate and bone tissue engineering is used as an alternative. In this study, we developed a platform to allow the triple ion delivery with sequential delivery capacity to potentially stimulate antibacterial, angiogenic and osteogenic processes. The scaffold-based platform consisted of alginate/hydroxyapatite (HA) microparticles embedded in alginate fibers. Firstly, microparticles were developed using different ratios of alginate:HA using the spraying method, resulting in a high reproducibility of the technique. Microparticle size between 100–300 µm and ratio 1:40 resulted in a more spherical morphology and were selected for their incorporation into alginate fiber. Different amounts of copper and cobalt were added with the microparticles and alginate fiber, respectively, were used as model ions which could eventually modulate and mimic antimicrobial and angiogenic processes. Moreover, calcium ion was also incorporated in both, in order to provide the system with potential osteogenic properties together with HA. The multiple delivery of copper, cobalt and calcium released were in the therapeutic range as measured by induced coupled plasma (ICP), providing a promising delivery strategy for tissue engineering.


2021 ◽  
Author(s):  
Yaqi Wang ◽  
Hang Chen ◽  
Li Cui ◽  
Chao Tu ◽  
Chao Yan

Abstract Alginate fibers have great potential in many applications, such as medical dressings, surgical sutures, and masks, etc. owing to their good biocompatibility and other properties. However, for alginate fibers prepared by wet spinning, the fibers have disadvantages such as low strength, poor toughness, and brittleness. Herein, a simple, scalable, and cost-effective blending spinning strategy was developed to produce the alginate composite fibers with excellent mechanical properties. Cellulose nanocrystals (CNCs) were incorporated directly in the wet spinning solution to improve its strength, wherein the CNCs were prepared from waste cotton fabrics. Polyethylene glycol (PEG) molecular chain was grafted onto the CNC surface to be used as a plasticizer while increasing the dispersibility of CNCs in alginate matrix. It was worth noting that modification of alginate fibers with PEG grafted cellulose nanocrystals (CNC-g-PEG) enhanced the tensile strength and elongation at break, simultaneously. In addition, the CNC-g-PEG modified alginate fibers exhibited improved salt tolerance and reduced water absorbency. This work may make high-value utilization of waste cotton fabrics, and pave the way for the development of high-performance, green alginate fibers.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1709
Author(s):  
Ji-Soo Park ◽  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Eun-Ah Lee ◽  
Azelia Wulan Cindradewi ◽  
...  

We aimed to improve the mechanical properties of alginate fibers by reinforcing with various cellulose nanofibrils (CNFs). Pure cellulose nanofibril (PCNF), lignocellulose nanofibril (LCNF) obtained via deep eutectic solvent (DES) pretreatment, and TEMPO-oxidized lignocellulose nanofibril (TOLCNF) were employed. Sodium alginate (AL) was mixed with PCNF, LCNF, and TOLCNF with a CNF content of 5–30%. To fabricate microcomposite filaments, the suspensions were wet-spun in calcium chloride (CaCl2) solution through a microfluidic channel. Average diameters of the microcomposite filaments were in the range of 40.2–73.7 μm, which increased with increasing CNF content and spinning rate. The tensile strength and elastic modulus improved as the CNF content increased to 10%, but the addition of 30% CNF deteriorated the tensile properties. The tensile strength and elastic modulus were in the order of LCNF/AL > PCNF/AL > TOLCNF/AL > AL. An increase in the spinning rate improved the tensile properties.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2775
Author(s):  
Ayben Pakolpakçıl ◽  
Zbigniew Draczynski

Green electrospun materials are gaining popularity in the quest for a more sustainable environment for human life. Bee pollen (BP) is a valuable apitherapeutic product and has many beneficial features such as antioxidant and antibacterial properties. Alginate is a natural and low-cost polymer. Both natural materials show good compatibility with human tissues for biomedical applications and have no toxic effect on the environment. In this study, bee pollen-loaded sodium alginate and polyvinyl alcohol (SA/PVA) nanofibrous mats were fabricated by the electrospinning technique. The green electrospun nanofibrous mats were analyzed by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimeter (DSC). According to the findings of the study, the toxin-free electrospinning method is suitable for producing green nanomaterial. Because of the useful properties of the bee pollen and the favorable biocompatibility of the alginate fibers, the bee pollen-loaded SA/PVA electrospun mats have the potential for use in a variety of biomedical applications.


Author(s):  
Sara Seidelin Majidi ◽  
Yingchun Su ◽  
Mathias Lindh Jørgensen ◽  
Christoph Müller ◽  
Pourya Forooghi ◽  
...  

Author(s):  
Zhongda Chen ◽  
Jun Song ◽  
Yumin Xia ◽  
Yuwei Jiang ◽  
Luis Larrea Murillo ◽  
...  

2021 ◽  
pp. 118167
Author(s):  
Fuqiang Wan ◽  
Hang Ping ◽  
Wenxuan Wang ◽  
Zhaoyong Zou ◽  
Hao Xie ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Ming Yan ◽  
Junfeng Shi ◽  
Song Tang ◽  
Guohang Zhou ◽  
Jiexiang Zeng ◽  
...  

The SA/PAA-VSNP fiber was obtained using dynamic wet spinning through dynamic hydrogen bonding in the double network structure.


2021 ◽  
Author(s):  
Ming Yan ◽  
Junfeng Shi ◽  
Song Tang ◽  
Lingwei Liu ◽  
Haotong Zhu ◽  
...  

Nanoparticles were introduced to strengthen and toughen sodium alginate fibers through a dynamically cross-linked network by hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document