soil cement
Recently Published Documents


TOTAL DOCUMENTS

804
(FIVE YEARS 209)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 75 (1) ◽  
pp. 19-26
Author(s):  
Ana Cláudia Franca Gomes ◽  
Carol Cardoso Moura Cordeiro ◽  
Ivan Julio Apolonio Callejas ◽  
Sônia Denise Ferreira Rocha

2021 ◽  
Vol 15 (58) ◽  
pp. 100-121
Author(s):  
Marlize Reffatti Zinelli Viezzer ◽  
Odorico Konrad ◽  
Bruno Furquim Horodenski ◽  
Aparecida Garcia Pacheco Gabriel ◽  
Rodrigo Spinelli

Resumo: A discussão sobre edificações sustentáveis vem sendo abordada há décadas por diferentes autores, em geral com foco no consumo energético e na vida útil dos materiais, contudo para atender esses objetivos são necessárias novas tecnologias que promovam mais sustentabilidade. Para tanto, a inclusão de fibras vegetais em compostos de solo-cimento se mostram uma alternativa interessante, e pelo fato do setor industrial madeireiro movimentar a economia local no município de Alta Floresta o resíduo serragem passa a ser um possível agregado nos tijolos ecológicos, uma vez que o armazenamento inadequado deste resíduo pode causar sérios impactos ambientais, portanto, este estudo se propôs a desenvolver um tijolo ecológico fabricado a partir da mistura de solo-cimento e serragem de três espécies florestais da Amazônia, Cambará - Vochysia sp., Cedrinho - Erisma uncinatum Warm., Garapeira. - Apuleia sp, e ainda avaliar a resistência a compressão com intervalos de cura de 7, 14, 21 e 28 dias, com o intuito de verificar a viabilidade do material construtivo. Para a realização do experimento, os tijolos foram fabricados com traço de 1:8:2,5, (cimento: solo: serragem) e a serragem utilizada com dois tratamentos, in natura e tratada por imersão e padronização granulométrica. O material misturado foi compactado em uma prensa hidráulica. Como resultado, os tijolos com serragem apresentaram valores de resistência mecânica de: Cedrinho 1,26Mpa, Cambará 1,70Mpa e Garapeira 1,95Mpa e teores de absorção de umidade  de 15,7%, 17,6% e 13,8%, respectivamente.Palavras-chave: Sustentabilidade. Tijolo solo-cimento. Serragem. Abstract: The discussion about sustainable edifications has been addressed in decades by different authors, generally focusing energetic consume and the materials lifespan, however to reach these goals it is necessary new technologies that promote more sustainability. For that the inclusion of vegetal fibers in soil-cements composts present as an interesting alternative, and because the timber industry moves the local economy in the city of Alta Floresta the sawdust residue become a possible aggregate of ecologic bricks since inadequate storage of this material can cause serious environment impacts, therefore this study propose to develop an ecologic brick manufactured by the mix of soil-cement and sawdust of three Amazonian species: Cambará - Vochysia sp., Cedrinho - Erisma uncinatum Warm, Garapeira. - Apuleia sp., and also evaluate the compression resistance in 7, 14, 21, 28 days intervals, aiming to verify the feasibility of the constructive material. To carry out the experiment the bricks were manufacture with the ratio of 1:8:2,5 (cement: soil: sawdust), and the sawdust used was treated twice, in natura, treated by immersion and granulometric standardization. The mixed material was compacted in a hydraulic press. As a result, the sawdust bricks showed resistance values of: Cedrinho 1.26 MPa, Cambará 1.70 MPa and Garapeira 1.95 MPa and humidity absorption percentage of 15.7%, 17.6%, and 13.8% % respectively.Keywords: Sustainably, Ecologic Brick, Sawdust


Author(s):  
Minakshi Uchibagle ◽  
B Ram Rathan Lal

Controlled low-strength material (CLSM) is a self-levelling cementitious material. It is not concrete nor soil-cement, however, it possesses properties similar to both. CLSM is widely used as a replacement for soil-cement material in many geotechnical applications such as structural backfill, pipeline beddings, void fill, pavement bases and bridge approaches. This paper study potential possibility of polypropylene fiber in CLSM. Harden and fresh properties compressive strength , flowability and density for the proposed CLSM were investigated. This CLSM mix design with different percentage of polypropylene fiber and pond ash, cement and water. EPS beats and polypropylene add 0 %, 0.5%, 1.0% and 1.5% of total weight is added in CLSM MIx. Results show that the CLSM incorporating EPS beats and polypropylene satisfies compressive strength requirement as per the requirements of ACI committee 229. polypropylene decreases the flowability of CLSM mix and at the same tine by adding EPS beats the density of CLSM mix are reduce which become lightweight CLSM mix. from this it can conclude that polypropylene fibers is less effective in CLSM mix and EPS beats make CLSM mix lightweight which create lightweight CLSM mix applicable for filling application.


2021 ◽  
Vol 1 (2) ◽  
pp. 32-39
Author(s):  
Koruyn Ashot Karapetyan ◽  
Sargis Hrachik Hairoyan ◽  
Eghishe Samvel Manukyan

The results of an experimental study of changes in strength and deformability during the period of time subjected to short-term loading of elements made of a soil-cement composite based on white soil (belozems) of carbonate composition are discussed. Research was carried out in accordance with current standards, as well as a well-known method that has been repeatedly tested earlier. To assess the experimentally established data, the results of similar studies by other authors, carried out applying elements from soil-cement based on clay soils, as well as from lightweight concrete on lithoid pumice (volcanic rock), are also presented. On the basis of the comparative analyzes of the experimentally established data, conclusions are formulated. The consideration of those may be useful both for the estimation of optimal schedules of the construction of buildings from a soil-cement composite, and for the assessment of their stress-strain state.


2021 ◽  
Vol 6 (1(62)) ◽  
pp. 43-47
Author(s):  
Olena Mykhailovska ◽  
Mykola Zotsenko

The object of research is the basis of the compressor equipment of the complex gas treatment plant at the Abazivka field and the strengthening of the base soils with soil-cement elements, which are proposed to be arranged with the use of drilling technology. The research area is located on the territory of the current Abazivka Integrated Gas Preparation, near the village of Bugaivka, Poltava region, Ukraine. Abazivka Integrated Gas Preparation receives products from wells in Abazivka and Sementsivske deposits. It is proposed to carry out the reconstruction of Integrated Gas Preparation, which includes strengthening the foundation of the compressor model C1004-JGT/2-1 manufactured by «Propak» (Alberta, Canada). The amplitudes of oscillations of the compressor foundation were determined at a speed of 1400 rpm at the appropriate site with geological conditions. The magnitudes of oscillations and subsidence of the compressor foundation of the Abazivka complex of complex gas treatment were investigated experimentally. When determining the amplitudes of oscillations of the compressor foundations, only the amplitudes of oscillations in the direction parallel to the sliding of the pistons were calculated, and the influence of the vertical component of the perturbing forces was not taken into account. It is established that the amplitude of horizontal-rotational oscillations of the upper face of the compressor foundation relative to the horizontal axis exceeds the maximum allowable. It is substantiated that soil cement is a sufficiently strong and waterproof material that can be used to strengthen the base during the construction of equipment foundations. The possibility of application of the technology of application of soil-cement piles, made by brown-mixing technology for strengthening the base under the foundation of the compressor, is described and investigated. It is proposed to reinforce the base with rows of soil-cement elements, which will increase the modulus of deformation of the base, which is represented by loam, light to 14.3 MPa. In the case of strengthening the base, the amplitude of horizontal-rotational oscillations of the upper face of the compressor foundation is much less than the maximum allowable 0.1 mm. The subsidence of the foundation at reinforcement of the base, which does not exceed the maximum allowable value, is determined. Soil-cement elements are proposed to be arranged according to the drilling technology.


2021 ◽  
Vol 27 (12) ◽  
pp. 33-49
Author(s):  
Fadhil W. AL-Malkee ◽  
Mahmood D. Ahmed

Jet grouting is one of the most widely applied soil improvement techniques. It is suitable for most geotechnical problems, including improving bearing capacity, decreasing settlement, forming seals, and stabilizing slopes. One of the difficulties faced by designers is determining the strength and geometry of elements created using this method. Jet grouted soil-cement columns in soil are a complicated issue because they are dependent on a number of parameters such as soil type, grout and water flow rate, rotation and lifting speed of monitor, nozzle jetting force, and water to cement ratio of slurry. This paper discusses the effect of the water-cement ratio on the physical and mechanical characteristics of soilcrete. In the laboratory, sandy soil mixed with cement grout with water-cement ratio varies from (0.7:1 to 1.4:1). To evaluate the characteristics of soilcrete, 96 specimens were prepared in the laboratory and tested at different curing times. The results indicate that the Uniaxial Compressive Strength (UCS) of soilcrete decreases with increasing the (W/C) ratio of the grout, where the soilcrete strength of W/C ratio of 0.7 is higher about 237% of W/C ratio of 1.4 at 28-day; the evolution of the (UCS) is proportional to the logarithm of the curing time; the ratio between the modulus of elasticity (Etg50) to the maximum UCS varies from 113 to 175; when the water-cement ratio increases, the dry density of soilcrete decreases, as a result, the (USC) of soilcrete decreases.


2021 ◽  
Vol 21 (12) ◽  
Author(s):  
Yonghui Chen ◽  
Yang Zhou ◽  
Gangqiang Kong ◽  
Long Chen ◽  
Geng Chen
Keyword(s):  

2021 ◽  
Vol 313 ◽  
pp. 125518
Author(s):  
Adriana Belén Costantini Romero ◽  
Franco Matias Francisca ◽  
Ignacio Giomi

Sign in / Sign up

Export Citation Format

Share Document