agricultural drought
Recently Published Documents


TOTAL DOCUMENTS

806
(FIVE YEARS 398)

H-INDEX

41
(FIVE YEARS 10)

2022 ◽  
Vol 262 ◽  
pp. 107428
Author(s):  
Yifei Li ◽  
Shengzhi Huang ◽  
Hanye Wang ◽  
Xudong Zheng ◽  
Qiang Huang ◽  
...  

2022 ◽  
Author(s):  
Jiawei Zhou ◽  
Xiaohong Chen ◽  
Chuang Xu ◽  
Pan Wu

Abstract Socioeconomic drought is a phenomenon of water shortage caused by an imbalance between the supply and demand of water resources in natural and human socioeconomic systems. Occurrence of these droughts is closely related to sustainable socioeconomic development. However, compared with meteorological drought, hydrological drought and agricultural drought, socioeconomic drought has received relatively little attention. Therefore, this paper proposes a universal and relatively simple socioeconomic drought assessment index, the Standardized Supply and Demand Water Index (SSDWI). Taking the Jianjiang River Basin (JJRB) in Guangdong Province, China as an example, socioeconomic drought characteristics and trends during 1985-2019 were analyzed. The return period of different levels of drought were calculated using a copula function to estimate the risk of socioeconomic drought in the basin, and the relationship between socioeconomic, meteorological, and hydrological droughts and their potential drivers were discussed. The results showed that: (1) SSDWI was a better index for characterizing socioeconomic drought in the JJRB. 29 socioeconomic droughts occurred in the basin during the past 35 years, with an average duration of 6.16 months and an average severity of 5.82 per events. Socioeconomic droughts mainly occurred in autumn and winter, which also had more severe droughts than other seasons. (2) In the JJRB, the joint return periods of ‘∪’ and ‘∩’ for moderate drought, severe drought and extreme drought were 8.81a and 10.81a, 16.49a and 26.44a, and 41.68a and 91.13a, respectively; (3) Due to the increasing outflow from Gaozhou Reservoir, the risk of socioeconomic drought and hydrological drought in the JJRB has significantly declined since 2008. The reasonable operation of the reservoir has played an important role in alleviating the hydrological and socioeconomic drought in the basin.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 375-380
Author(s):  
H. P. DAS ◽  
S. B. GAONKAR ◽  
E. I. FERNANDES ◽  
V. K. PANDEY
Keyword(s):  

2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
Xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will be informative regarding agricultural drought along with flood disaster assessment and will provide early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil Moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Furthermore, we utilized ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data displayed a high correlation with local soil measurements at nine sites. We next analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations demonstrated an increasing trend. We further investigated whether abrupt soil moisture changes existed at each station or not. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized as “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mostly distributed in the Yangzhou and Huai’an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mostly located in northern Xuzhou.


2021 ◽  
Vol 22 (2) ◽  
pp. 41-49
Author(s):  
Siti Najma Nindya Utami ◽  
Rista Hernandi Virgianto ◽  
Dzikrullah Akbar

Intisari Kekeringan merupakan bencana kompleks yang dapat menyebabkan kerugian masyarakat di berbagai sektor. Salah satu wilayah yang berisiko tinggi mengalami kekeringan adalah Pulau Lombok. Wilayah ini memiliki lahan yang berisiko terkena kekeringan seluas 405.985 ha. Tingkat keparahan kekeringan meteorologis dapat diukur dengan Standardized Precipitation Evapotranspiration Index (SPEI). Salah satu karakteristik kekeringan adalah kondisi vegetasi tanaman yang buruk, oleh karena itu Standardized Vegetation Index (SVI) digunakan sebagai acuan dalam monitoring kekeringan agrikultural. Penelitian ini bertujuan untuk mengetahui hubungan antara SPEI dengan SVI untuk setiap pos hujan di Pulau Lombok tahun 2001-2018. Penelitian ini menggunakan data bulanan tahun 2001-2018 yang meliputi data observasi curah hujan, suhu maksimum, suhu minimum, penginderaan jauh Normalized Differences Vegetation Index (NDVI) dengan resolusi 0,05°, model FLDAS kecepatan angin yang juga didapatkan dengan resolusi 0,5°, lama penyinaran matahari, lintang, dan elevasi. Metode yang digunakan yaitu menghitung indeks kekeringan SPEI dan SVI, kemudian menghitung korelasi dan signifikansi untuk kedua indeks kekeringan tersebut. Hasilnya menunjukkan bahwa SPEI1 lebih tinggi berkorelasi dengan SVI+1 dengan kategori cukup kuat. Untuk SPEI3, SPEI6, dan SPEI12 berkorelasi cukup kuat hingga kuat dengan SVI0. Hal ini menunjukkan bahwa kekeringan jangka panjang akan langsung mempengaruhi kekeringan agrikultural atau kekeringan vegetasi saat itu juga. Nilai korelasi yang lebih tinggi untuk setiap indeks tersebar di pos hujan yang terletak di tengah-tengah Pulau Lombok, karena pengaruh kondisi geografis dan demografis Abstract Drought is a complex disaster because it can cause loss to society in various sectors. One of the high-risk areas of drought is Lombok Island. This area has 405,985 ha of drought risk. The severity of meteorological drought can be measured by the Standardized Precipitation Evapotranspiration Index (SPEI). One of the characteristics of drought is the poor condition of plant vegetation, therefore the Standardized Vegetation Index (SVI) is used as a reference in monitoring agricultural drought. This study aims to determine the relationship of SPEI with SVI for each rainfall post in Lombok Island from 2001-2018. This study uses monthly data from 2001-2018, including observation data of rainfall, maximum temperature, minimum temperature, remote sensing Normalized Differences Vegetation Index (NDVI) 0.05 °, FLDAS model of wind speed 0.5 °, length of the day, latitude, and elevation. The use method is to calculate SPEI and SVI, then calculate the correlation and significance for the two drought indices. The result shows that SPEI1 is higher in correlation with SVI+1, which is in a strong enough category. For SPEI3, SPEI6, and SPEI12, the correlation is strong enough to strong with SVI0. This suggests that long-term drought will directly affect agricultural drought or immediate vegetation drought. The higher correlation values ??for each index are spread over the rain posts located in the middle of Lombok Island because geographic and demographic conditions influence them.  


2021 ◽  
Author(s):  
J. Y. Song ◽  
P. Abbaszadeh ◽  
P. Deb ◽  
H. Moradkhani

Sign in / Sign up

Export Citation Format

Share Document