response recovery
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 105)

H-INDEX

27
(FIVE YEARS 6)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Pengyu Ren ◽  
Lingling Qi ◽  
Kairui You ◽  
Qingwei Shi

The indoor environment of buildings affects people’s daily life. Indoor harmful gases include volatile organic gas and greenhouse gas. Therefore, the detection of harmful gas by gas sensors is a key method for developing green buildings. The reasonable design of SnO2-sensing materials with excellent structures is an ideal choice for gas sensors. In this study, three types of hierarchical SnO2 microspheres assembled with one-dimensional nanorods, including urchin-like microspheres (SN-1), flower-like microspheres (SN-2), and hydrangea-like microspheres (SN-3), are prepared by a simple hydrothermal method and further applied as gas-sensing materials for an indoor formaldehyde (HCHO) gas-sensing test. The SN-1 sample-based gas sensor demonstrates improved HCHO gas-sensing performance, especially demonstrating greater sensor responses and faster response/recovery speeds than SN-2- and SN-3-based gas sensors. The improved HCHO gas-sensing properties could be mainly attributed to the structural difference of smaller nanorods. These results further indicate the uniqueness of the structure of the SN-1 sample and its suitability as HCHO- sensing material.


2022 ◽  
Vol 571 ◽  
pp. 151162
Author(s):  
Ruozhen Wu ◽  
Juanyuan Hao ◽  
Shengliang Zheng ◽  
Quan Sun ◽  
Tingting Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 367
Author(s):  
Andrea Gnisci ◽  
Antonio Fotia ◽  
Lucio Bonaccorsi ◽  
Andrea Donato

Nanostructured metal oxide semiconductors (MOS) are considered proper candidates to develop low cost and real-time resistive sensors able to detect volatile organic compounds (VOCs), e.g., diacetyl. Small quantities of diacetyl are generally produced during the fermentation and storage of many foods and beverages, conferring a typically butter-like aroma. Since high diacetyl concentrations are undesired, its monitoring is fundamental to identify and characterize the quality of products. In this work, a tin oxide sensor (SnO2) is used to detect gaseous diacetyl. The effect of different working atmospheres (air, N2 and CO2), as well as the contemporary presence of ethanol vapors, used to reproduce the typical alcoholic fermentation environment, are evaluated. SnO2 sensor is able to detect diacetyl in all the analyzed conditions, even when an anaerobic environment is considered, showing a detection limit lower than 0.01 mg/L and response/recovery times constantly less than 50 s.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Qiyilan Guang ◽  
Baoyu Huang ◽  
Xiaogan Li

Gold nanoparticles decorated WS2 microflakes (Au/WS2) have been synthesized by an in situ chemical reducing process. A chemiresistive-type sensor using as-synthesized Au/WS2 heterostructures as sensing materials shows an improved response to different concentrations of ammonia compared to pure WS2 at room temperature. As the concentrations of gold nanoparticles increased in heterostructures, response/recovery speeds of the sensors became faster although the sensitivity of the sensor was compromised compared to the sensitivity of the sensor with lower concentrations of Au. In addition, the Au/WS2-based sensor indicated excellent selectivity to formaldehyde, ethanol, benzene and acetone at room temperature. The improved performance of the sensors was attributed to the synergistic effect of electronic sensitization and chemical sensitization between WS2 and Au.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 345
Author(s):  
Zhe Ren ◽  
Yunbo Shi ◽  
Tianming Song ◽  
Tian Wang ◽  
Bolun Tang ◽  
...  

Owing to harsh working environments and complex industrial requirements, traditional gas sensors are prone to deformation damage, possess a limited detection range, require a high working temperature, and display low reliability, thereby necessitating the development of flexible and low-temperature gas sensors. In this study, we developed a low-temperature polyimide (PI)-based flexible gas sensor comprising a reduced graphene oxide (rGO)/MoS2 composite. The micro-electro-mechanical system technology was used to fabricate Au electrodes on a flexible PI sheet to form a “sandwiched” sensor structure. The rGO/MoS2 composites were synthesized via a one-step hydrothermal method. The gas-sensing response was the highest for the composite comprising 10% rGO. The structure of this material was characterized, and a PI-based flexible gas sensor comprising rGO/MoS2 was fabricated. The optimal working temperature of the sensor was 141 °C, and its response-recovery time was significantly short upon exposure to 50–1500 ppm NH3. Thus, this sensor exhibited high selectivity and a wide NH3 detection range. Furthermore, it possessed the advantages of low power consumption, a short response-recovery time, a low working temperature, flexibility, and variability. Our findings provide a new framework for the development of pollutant sensors that can be utilized in an industrial environment.


2021 ◽  
Author(s):  
Dharmistha Chauhan ◽  
Swapna Bist Joshi

International financial institutions (IFIs) and multilateral development banks have been playing a vital role in the response, recovery and ‘build back anew’ agenda from the COVID-19 pandemic. This is especially true of the World Bank Group (WBG), given its high volumes of committed investments across sectors, especially in low-income and vulnerable countries. This report presents, through case studies, how care-responsive the World Bank’s COVID-19-related investments have been in four member countries: Bangladesh, Cambodia, Nepal and the Philippines. It does so by using the Care Principles and Care-Responsive Barometer for IFIs to assess the nature of the WBG’s post-COVID recovery investments in these select countries, and by building evidence through a gender- and care-responsive budget review. The foundation for care inclusion has already been laid in WBG policy. The report uses this as an entry point to urge it to bring women’s unpaid, underpaid and paid work to the centre of the IFI agenda in order to move towards rebuilding a more gender-just and equal future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3261
Author(s):  
Wenhao Wang ◽  
Lu Zhang ◽  
Yanli Kang ◽  
Feng Yu

(1) Background: Toluene gas is widely used in indoor decoration and industrial production, and it not only pollutes the environment but also poses serious health risks. (2) Methods: In this work, TiO2−CoFe2O4−Ag quaternary composite gas-sensing material was prepared using a hydrothermal method to detect toluene. (3) Results: The recombination of electron–hole pairs was suppressed, and the light absorption range was expanded after constructing a heterojunction and doping with Ag, according to ultraviolet–visible (UV–vis) diffuse reflectance spectra and photoluminescence spectroscopy. Moreover, in the detection range of toluene gas (3 ppm–50 ppm), the response value of TiO2−CoFe2O4−Ag increased from 2 to 15, which was much higher than that of TiO2−Ag (1.7) and CoFe2O4−Ag (1.7). In addition, the working temperature was reduced from 360 °C to 263 °C. Furthermore, its response/recovery time was 40 s/51 s, its limit of detection was as low as 10 ppb, and its response value to toluene gas was 3–7 times greater than that of other interfering gases under the same test conditions. In addition, the response value to 5 ppm toluene was increased from 3 to 5.5 with the UV wavelength of 395 nm–405 nm. (4) Conclusions: This is primarily due to charge flow caused by heterojunction construction, as well as metal sensitization and chemical sensitization of novel metal doping. This work is a good starting point for improving gas-sensing capabilities for the detection of toluene gas.


Author(s):  
Sadaf Nejatinia ◽  
Sara Khadem Charvadeh ◽  
Abbas Bagheri Khatibani

Abstract The sol gel method was used to synthesize pure zinc oxide, graphene doped zinc oxide, cobalt doped zinc oxide and graphene/cobalt doped zinc oxide samples to investigate their sensing properties. Different physical properties of the samples have been investigated and compared through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Using the XRD results, the lattice parameter increased with doping of the samples. Based on the analyses, the formation of zinc oxide in all samples and the related signs of graphene and cobalt were approved. By the aid of an electric circuit, all of the samples were exposed to different concentrations of ethanol. The best response/recovery time was reported for all samples at 3000 ppm. Doping of the samples had a significant effect on reducing the response/recovery time and increasing the sensitivity, which is a significant case for semiconductor gas sensors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fei Wang ◽  
Liyuan Yang ◽  
Xue-Quan Xian

Owing to their attractive potential in optoelectronic application, luminescent Ru(II) complexes with diamine ligands are harvesting more and more research efforts. These literature efforts, however, are mostly mononuclear ones, with no detailed discussion on the performance comparison between mononuclear and multinuclear Ru(II) complexes. This work synthesized three diamine ligands having two or multiple chelating sites in each ligand, as well as their Ru(II) complexes. The single-crystal structure, electronic structure, and photophysical parameters of these Ru(II) complexes were analyzed and compared. It was found that multinuclear Ru(II) complexes had a pure MLCT (metal-to-ligand charge transfer)–based emissive center, showing longer emission lifetime and higher emission quantum yield, which were desired for oxygen sensing. Then, the oxygen sensing performance of these mononuclear and multinuclear Ru(II) complexes was systematically compared by doping them into polymer fibers via electrospinning method. Improved oxygen sensing performance was observed from binuclear Ru(II)-doped nanofibrous samples, compared with the sensing performance of mononuclear ones, including higher sensitivity, shorter response/recovery time, and better photostability. The causation was attributed to the fact that the emissive state of multinuclear Ru(II) complexes was MLCT-based ones and thus more sensitive to O2 quenching than monocular Ru(II) complexes whose emissive state was a mixture of MLCT and LLCT (ligand-to-ligand charge transfer). In addition, a multinuclear Ru(II) complex had multiple emissive/sensing components, so that its sensing collision probability with O2 was increased, showing better photostability and shorter response/recovery time. The novelty of this work was the linear oxygen sensing curve, which was rarely reported in the previous work.


Sign in / Sign up

Export Citation Format

Share Document