transdermal permeability
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Jamal Ali Ashoor ◽  
Jinan M. Mohsin ◽  
Hussein Mohammed Mohsin ◽  
Basam W. Mahde ◽  
Mowafaq M. Gareeb

Abstract Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.Methotrexate penetration alone without enhancer is only about 20%, while using enhancers reach to 85%, 99% and 90% with eucalyptus oil 4%, peppermint oil 4% and olive oil 4% respectively after 24 hours.Conclusion: Methotrexate transdermal gel was prepared and evaluated fruitfully in-vitro with a good permeation across semipermeable membrane. The results indicated that using of peppermint oil as enhancer have superiority to enhance the transdermal permeation of the Methotrexate.


Author(s):  
Zingade Sarika G. ◽  
Nagoba Shivappa N. ◽  
Agwane Shanta G. ◽  
Swami Avinash B.

The purpose of this study is to create and test a Terbinafine hydrochloride microemulgel. Terbinafine hydrochloride is an FDA-approved antifungal medication used to treat fungal infections on the skin. It's a BCS class II medication with little bioavailability. In the realm of pharmaceutical sciences, microemulgel has evolved into one of the most intriguing topical preparations. Microemulgel as a delivery technique has several advantages over simple traditional formulations, including simplicity of administration, increased residence duration at the application site, consistent drug release with improved bioavailability, superior thermodynamic stability, and excellent transdermal permeability. Terbinafine hydrochloride microemulgels were made with carbopol 940 and HPMC as gelling agents, oleic acid as an oil, parabens as a preservative, and tween 20 as an emulgent and penetration enhancer. The appearance, spreadability, homogeneity, viscosity, pH, percent drug content, and in vitro diffusion studies of the generated microemulgel formulation were all visually checked. The findings show that developing a terbinafine-containing microemulgel is more effective, but clinical efficacy must be determined through clinical trials.


2021 ◽  
Vol 91 (1) ◽  
pp. 86-98
Author(s):  
S. S. Malchenkova ◽  
◽  
N. S. Golyak ◽  
V. M. Tsarenkov ◽  
◽  
...  

The article presents the main types of laboratory animals that are used to study the transdermal permeability of chemical compounds. We described the structural features of epidermis, derma and skin appendages in humans and laboratory animals (small rodents, pigs, monkeys). We also emphasized advantages and disadvantages of various laboratory animals as objects for in vivo transdermal modeling. A method of extrapolation called “The parallelogram method” or «Triple Pack» has been singled out to predict the permeability of the human skin in the presence of experimental data on the permeability of the skin of animals in vivo and humans in vitro. The article describes the experimental design (including preparation of animals, premises and the substance applied) to determine transdermal permeability of substances in vivo under the guidelines of the World Health Organization and the Organization for Economic Cooperation and Development. Tissue microdialysis in volunteers has been identified as the most perfect and safest ways to promptly detect substances in the derma and tape stripping has been made in the cells of the stratum corneum.


2021 ◽  
Vol 11 (5) ◽  
pp. 2390
Author(s):  
Sunmi Lee ◽  
Jongbong Choi ◽  
Junghyun Kim ◽  
Yongwoo Jang ◽  
Tae Ho Lim

The transdermal delivery system of nutrients, cosmetics, and drugs is particularly attractive for painless, noninvasive delivery and sustainable release. Recently, atmospheric pressure plasma techniques have been of great interest to improve the drug absorption rate in transdermal delivery. Currently, plasma-mediated changes in the lipid composition of the stratum corneum are considered a possible mechanism to increase transdermal permeability. Nevertheless, its molecular and cellular mechanisms in transdermal delivery have been largely confined and still veiled. Herein, we present the effects of cold plasma on transdermal transmission on porcine skin and the cellular permeability of keratinocytes and further demonstrate the production of nitric oxide from keratinocytes. Consequently, argon plasma irradiation for 60 s resulted in 2.5-fold higher transdermal absorption of aniline blue dye on porcine skin compared to the nontreated control. In addition, the plasma-treated keratinocytes showed an increased transmission of high-molecular-weight molecules (70 and 150 kDa) with the production of nitric oxide. Therefore, these findings suggest a promoting effect of low-temperature plasma on transdermal absorption, even for high-molecular-weight molecules. Moreover, plasma-induced nitric oxide from keratinocytes is likely to regulate transdermal permeability in the epidermal layer.


Nano LIFE ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2040009
Author(s):  
Tianbao Wei ◽  
Dan Chen ◽  
Hexiang Mei ◽  
Zheng Zhou ◽  
Jianyong Sheng ◽  
...  

Phenylethyl resorcinol-loaded cationic nanoliposomes (PR-CLPs) were prepared and characterized. Moreover, their transdermal properties, cellular uptake, and inhibition of tyrosinase activity and melanin production in B16F10 cells were studied. The mean particle size, polydispersity index (PDI) and zeta potential of the PR-CLPs were [Formula: see text][Formula: see text]nm, [Formula: see text][Formula: see text]mV [Formula: see text][Formula: see text]mV, respectively. The drug loading efficiency (DLE) and entrapment efficiency (EE) of PR in the PR-CLPs were [Formula: see text]% and [Formula: see text]%, respectively. Sustained release of PR from the PR-CLPs was observed in vitro release experiments. The results of the in vitro transdermal experiments showed that PR-CLPs significantly improved both the retention of PR in the skin and its transdermal permeability ([Formula: see text]) in comparison with PR solution or traditional phenylethyl resorcinol nanoliposomes (PR-LPs). The uptake and accumulation of FITC-CLPs in B16F10 cells was significantly enhanced as compared with that of FITC-LPs. Furthermore, at a PR concentration of 20 or 30[Formula: see text][Formula: see text]g/mL, PR-CLPs displayed a high tyrosinase inhibitory activity and caused a noticeable reduction in the melanin content in B16F10 cells. Taken together, these results indicate that PR-CLPs can efficiently deliver phenylethyl resorcinol to produce an enhanced skin lightening effect.


2019 ◽  
Vol Volume 14 ◽  
pp. 2485-2495
Author(s):  
Zhenmiao Qin ◽  
Feng Chen ◽  
Demei Chen ◽  
Yong Wang ◽  
Yinfeng Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document