durability performance
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 166)

H-INDEX

29
(FIVE YEARS 8)

2022 ◽  
Vol 318 ◽  
pp. 126152
Author(s):  
Laís Cristina Barbosa Costa ◽  
Marcela Aguiar Nogueira ◽  
Humberto Dias Andrade ◽  
José Maria Franco de Carvalho ◽  
Fernanda Pereira da Fonseca Elói ◽  
...  

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 53
Author(s):  
Rayed Alyousef ◽  
Ahmed Abdel Khalek Ebid ◽  
Ghasan Fahim Huseien ◽  
Hossein Mohammadhosseini ◽  
Hisham Alabduljabbar ◽  
...  

Various geopolymer mortars (GPMs) as concrete repairing materials have become effective owing to their eco-friendly properties. Geopolymer binders designed from agricultural and industrial wastes display interesting and useful mechanical performance. Based on this fact, this research (experimental) focuses on the feasibility of achieving a new GPM with improved mechanical properties and enhanced durability performance against the aggressive sulfuric acid and sulfate attacks. This new ternary blend of GPMs can be achieved by combining waste ceramic tiles (WCT), fly ash (FA) and ground blast furnace slag (GBFS) with appropriate proportions. These GPMs were designed from a high volume of WCT, FA, and GBFS to repair the damaged concretes existing in the construction sectors. Flexural strength, slant shear bond strength, and compatibility of the obtained GPMs were compared with the base or normal concrete (NC) before and after exposure to the aggressive environments. Tests including flexural four-point loading and thermal expansion coefficient were performed. These GPMs were prepared using a low concentration of alkaline activator solution with increasing levels of GBFS and FA replaced by WCT. The results showed that substitution of GBFS and FA by WCT in the GPMs could enhance their bond strength, mechanical characteristics, and durability performance when exposed to aggressive environments. In addition, with the increase in WCT contents from 50 to 70%, the bond strength performance of the GPMs was considerably enhanced under sulfuric acid and sulfate attack. The achieved GPMs were shown to be highly compatible with the concrete substrate and excellent binders for various civil engineering construction applications. It is affirmed that the proposed GPMs can efficiently be used as high-performance materials to repair damaged concrete surfaces.


2022 ◽  
Vol 14 (1) ◽  
pp. 498
Author(s):  
Ghasan Fahim Huseien ◽  
Mohammad Ali Asaad ◽  
Aref A. Abadel ◽  
Sib Krishna Ghoshal ◽  
Hussein K. Hamzah ◽  
...  

Nowadays, an alkali-activated binder has become an emergent sustainable construction material as an alternative to traditional cement and geopolymer binders. However, high drying shrinkage and low durability performance in aggressive environments such as sulphuric acid and sulphate are the main problems of alkali-activated paste, mortar and concrete. Based on these factors, alkali-activated mortar (AAM) binders incorporating high-volume palm oil fuel ash (POFA), ground blast furnace slag (GBFS) and fly ash (FA) were designed to enhance their durability performance against aggressive environments. The compressive strength, drying shrinkage, loss in strength and weight, as well as the microstructures of these AAMs were evaluated after exposure to acid and sulphate solutions. Mortars made with a high volume of POFA showed an improved durability performance with reduced drying shrinkage compared to the control sample. Regarding the resistance against aggressive environments, AAMs with POFA content increasing from 0 to 70% showed a reduced loss in strength from 35 to 9% when subjected to an acid attack, respectively. Additionally, the results indicated that high-volume POFA binders with an increasing FA content as a GBFS replacement could improve the performance of the proposed mortars in terms of durability. It is asserted that POFA can significantly contribute to the cement-free industry, thus mitigating environmental problems such as carbon dioxide emission and landfill risks. Furthermore, the use of POFA can increase the lifespan of construction materials through a reduction in the deterioration resulting from shrinkage problems and aggressive environment attacks.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Tariq Ali ◽  
Abdul Salam Buller ◽  
Fahad ul Rehman Abro ◽  
Zaheer Ahmed ◽  
Samreen Shabbir ◽  
...  

Cement production produces a high amount of carbon dioxide, which has a negative impact on the environment. By utilizing waste products instead of cement, environmental degradation can be reduced. The current study was undertaken to study the mechanical and durability performance of concrete by replacing 7.5%, 10%, and 12.5% silica fume (SF) of cement weight. Additionally, coal bottom ash (CBA) was also substituted as fine aggregates with 10%, 20%, and 30%. Compressive strength and indirect tensile strength were the major parameters regarding mechanical properties, while corrosion analysis and sulfate attack were set for durability performance. Sixteen mixes were prepared including a control mix. Out of these, three mixes contained SF, three mixes contained CBA, and eight mixes contained both SF and CBA with 1:2:4 ratio at 0.5 w/b ratio. The results concluded that the addition of 12.5% SF and 30% CBA gives optimum compressive strength and tensile strength. Furthermore, using the SF and CBA reduces the workability of concrete. Furthermore, the use of these byproducts increased the durability in terms of corrosion and sulfate attack.


2022 ◽  
Author(s):  
Gisela P. Cordoba ◽  
Agustín Rossetti ◽  
Silvina V. Zito ◽  
Viviana F. Rahhal ◽  
Darío Falcone ◽  
...  

2022 ◽  
Vol 317 ◽  
pp. 125947
Author(s):  
Babatunde Abiodun Salami ◽  
Mohammed Ibrahim ◽  
Hassan Amer Algaifi ◽  
Wasiu Alimi ◽  
Adeoluwa Oladapo Ewebajo

2022 ◽  
pp. 130315
Author(s):  
Muhammad Ashraf ◽  
Muhammad Farjad Iqbal ◽  
Momina Rauf ◽  
Muhammad Usman Ashraf ◽  
Aman Ulhaq ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document