core concrete
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Lei Li ◽  
Ke Lei

When a traffic tunnel passes through special strata such as soft rock with high geo-stress, expansive rock, and fault fracture zones, the traditional supporting structure is often destroyed due to complicated loads, which threatens the construction and operation safety of tunnel engineering. Concrete-filled steel tubular (CFST) structure gives full play to the respective advantages of steel and concrete and has better bearing capacity and economic benefits than traditional support structure, which has achieved good results in some underground engineering applications. In order to promote the application of CFST in the construction of traffic tunnels with complex geological conditions and improve the bearing capacity of the initial supporting structure of tunnels, the influencing factors of the bearing capacity of CFST arch were studied by numerical simulation. The main achievements are as follows: (1) The load-displacement curves of CFST members under different material parameters are basically consistent. CFST members have significant restrictions on displacement in the elastic stage and have high ultimate bearing capacity. Although the bearing capacity decreases obviously after reaching the peak, it shows good extension performance. (2) The height of the steel tube section, the thickness of the steel tube wall and the grade of the core concrete have an approximately linear positive correlation with the bearing capacity of CFST arch, but the influence of these three factors on the bearing capacity of CFST arch decreases in turn, and when the grade of core concrete increases above C50, it has no significant effect on the bearing capacity of members.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7203
Author(s):  
Ibrahim A. Sharaky ◽  
Ahmed S. Elamary ◽  
Yasir M. Alharthi

It is essential to make openings in structural concrete elements to accommodate mechanical and electrical needs. To study the effect of these openings on the performance of reinforced concrete (RC) elements, a numerical investigation was performed and validated using previous experimental work. The effect of the position and dimension of the opening and the beam length on the response of the beams, loads capacities, and failure modes was studied. The simulated RC beams showed different responses, loads capacities, and failure modes depending on the position and dimension of the opening. The transversal near support opening (TNSH) and longitudinal holes (LH) showed lower effects on the load capacities of the beams than the transversal near center opening (TNCH). The supreme reduction percentages of the load capacity (µu%) for beams with TNCH and TNSH were 37.21% and 30.34%, respectively (opening size = 150 × 150 mm2). In addition, the maximum µu% for beam with LH was 17.82% (opening size = 25% of the beam size). The TNSH with a width of less than 18.18% of the beam shear span (550 mm) had trivial effects on the beam’s load capacities (the maximum µu% = 1.26%). Although the beams with combined LH and TNCH or LH and TNSH showed different failure modes, they experienced nearly the same load reductions. Moreover, the length of the beam (solid or hollow) had a great effect on its failure mode and load capacity. Finally, equations were proposed and validated to calculate the yield load and post-cracking deflection for the concrete beams with a longitudinal opening.


2021 ◽  
Vol 71 (344) ◽  
pp. e262
Author(s):  
P.M. Carmona-Quiroga ◽  
A. Pachón-Montaño ◽  
J. Queipo-de-Llano ◽  
J.A. Martín-Caro ◽  
D. López ◽  
...  

That the preservation of twentieth concrete heritage is an area scantly explored can be attributed to a lack of appreciation for such a young material. In most cases conservation is broached from a technical perspective with little regard for heritage value. Ongoing assessment of the condition of structures is the primary strategy to minimise such misguided action. This study involved characterising the condition of the concrete in a number of singular elements forming part of the Eduardo Torroja Institute for Construction Science headquarters at Madrid, Spain, a modernist compound listed by the city of Madrid as a protected asset. The in situ findings using non-destructive and laboratory techniques revealed the core concrete to be in good condition. The surface material, however, exhibits signs of durability issues calling for conservation treatments and techniques compatible with the preservation of the integrity and authenticity of this young heritage material.


Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Hongbo Li ◽  
Pengfei Yan ◽  
Hao Sun ◽  
Jianguang Yin

In this study, the mechanical performance of multicavity concrete-filled steel tube (CFST) shear wall under axial compressive loading is investigated through experimental, numerical, and theoretical methodologies. Further, ultrasonic testing is used to assess the accumulated damage in the core concrete. Two specimens are designed for axial compression test to study the effect of concrete strength and steel ratio on the mechanical behavior of multicavity CFST shear wall. Furthermore, a three-dimensional (3D) finite element model is established for parametric studies to probe into compound effect between multicavity steel tube and core concrete. Based on finite element simulation and limit equilibrium theory, a practical formula is proposed for calculating the axial compressive bearing capacity of the multicavity CFST shear wall, and the corresponding calculation results are found to be in good agreement with the experimental results. This indicates that the proposed formula can serve as a useful reference for engineering applications. In addition, the ultrasonic testing results revealed that the damage process of core concrete under axial load can be divided into three stages: extension of initial cracks (elastic stage), compaction due to hooping effect (elastic-plastic stage), and overall failure of the concrete (failure stage).


2020 ◽  
Vol 14 (54) ◽  
pp. 169-181
Author(s):  
Pan Jinlong ◽  
Li Guanhua ◽  
Jingming Cai

In this paper, the finite element (FE) method was used to investigate the axial compressive behaviors of circular and square concrete filled aluminum tubes (CFAT). Firstly, the simulational results were compared with the experimental results and the accuracy of the proposed FE model was verified. On this basis, the FE model was further applied to compare the mechanical properties of both circular and square CFATs under axial compression. It was found that the circular CFATs have a better effect on restraining the core concrete than square CFATs. The parametric analysis was also conducted based on the proposed FE model. It was noticed that the mechanical differences of the two kinds of CFATs gradually decreased with the increase of the aluminum ratio, aluminum strength and concrete strength.


Sign in / Sign up

Export Citation Format

Share Document