metal weld
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 55)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Bernadett Spisák ◽  
Zoltán Bézi ◽  
Szabolcs Szávai

Welding is accompanied by the presence of weld residual stresses, which in case of dissimilar metal welds even with post weld heat treatment cannot be removed completely therefore they should be considered when assessing possible welding defects. The measurement of residual stress in metal weld is a very complex procedure and also in the investigated case could not be carried out as it is the part of a working plant. However, by modelling these processes, the residual stresses and deformation of the components caused by this manufacturing method can be determined. It is important to calculate these values as accurately as possible to determine the maximum load capacity of the structure. The structure under examination was the dissimilar metal weld of a VVER-440 steam generator. 2D simulations were performed, where temperature and phase-dependent material properties were implemented. Different loading scenarios were considered in the numerical analysis. The results can be useful to determine the real loading conditions of a given component and can be used to predict stress corrosion crack initiation locations, as well as to evaluate the lifetime and failure mode prediction of welded joints.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1470
Author(s):  
Shuang Qi ◽  
Wenxin Xiang ◽  
Lixun Cai ◽  
Xiaokun Liu ◽  
Yonggang Wang ◽  
...  

The safe-end of a steam generator (SG) nozzle dissimilar metal weld (DMW) for pressurized water reactors (PWRs) is the weakest point of failure which is crucial for the safe operation of a nuclear power station. Related to materials micro-structures, a uniaxial stress–strain relationship is the basic input parameter for nuclear power plant design, safety evaluation, and life management. In this paper, the micro-structure and tensile mechanical properties of a DMW of a European pressurized water reactor (EPR) were studied. Vickers hardness tester, optical microscope, and electron back scatter diffraction were used to analyze the micro-structure of the DMW joint. In addition, the residual strain of the DMW joint base material, heat-affected zone, weld metal, and fusion boundary region were studied. Based on digital image correlation (DIC) technology, tensile mechanical properties of the DMW joint were obtained. The results show that an accurate tensile stress–strain relationship of dissimilar metal welded joints can be obtained by using the DIC technique, the weld is the relatively weak link, and the residual strain is concentrated in the heat-affected zone. This study provides valuable engineering information regarding nuclear power plant design, in-service performance testing, and structural analysis and evaluation of welds containing defects.


2021 ◽  
Vol 57 (9) ◽  
pp. 739-752
Author(s):  
A. E. Bazulin ◽  
E. G. Bazulin ◽  
A. Kh. Vopilkin ◽  
D. S. Tikhonov

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.


2021 ◽  
Author(s):  
Luke Walker ◽  
Byoung Ou ◽  
Scott Hunter ◽  
Ying Lu ◽  
Colleen Hilla ◽  
...  

2021 ◽  
Author(s):  
Luke Walker ◽  
Byoung Ou ◽  
Scott Hunter ◽  
Ying Lu ◽  
Colleen Hilla ◽  
...  

2021 ◽  
Author(s):  
Eun Jang ◽  
Jefferey Stewart ◽  
Yuxiang Luo ◽  
Shijie Qu ◽  
Boian Alexandrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document