exoskeleton device
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261318
Author(s):  
Nicholas A. Bianco ◽  
Patrick W. Franks ◽  
Jennifer L. Hicks ◽  
Scott L. Delp

Assistive exoskeletons can reduce the metabolic cost of walking, and recent advances in exoskeleton device design and control have resulted in large metabolic savings. Most exoskeleton devices provide assistance at either the ankle or hip. Exoskeletons that assist multiple joints have the potential to provide greater metabolic savings, but can require many actuators and complicated controllers, making it difficult to design effective assistance. Coupled assistance, when two or more joints are assisted using one actuator or control signal, could reduce control dimensionality while retaining metabolic benefits. However, it is unknown which combinations of assisted joints are most promising and if there are negative consequences associated with coupled assistance. Since designing assistance with human experiments is expensive and time-consuming, we used musculoskeletal simulation to evaluate metabolic savings from multi-joint assistance and identify promising joint combinations. We generated 2D muscle-driven simulations of walking while simultaneously optimizing control strategies for simulated lower-limb exoskeleton assistive devices to minimize metabolic cost. Each device provided assistance either at a single joint or at multiple joints using massless, ideal actuators. To assess if control could be simplified for multi-joint exoskeletons, we simulated different control strategies in which the torque provided at each joint was either controlled independently or coupled between joints. We compared the predicted optimal torque profiles and changes in muscle and total metabolic power consumption across the single joint and multi-joint assistance strategies. We found multi-joint devices–whether independent or coupled–provided 50% greater metabolic savings than single joint devices. The coupled multi-joint devices were able to achieve most of the metabolic savings produced by independently-controlled multi-joint devices. Our results indicate that device designers could simplify multi-joint exoskeleton designs by reducing the number of torque control parameters through coupling, while still maintaining large reductions in metabolic cost.


2021 ◽  
Author(s):  
Nicholas August Bianco ◽  
Patrick W. Franks ◽  
Jennifer Lee Hicks ◽  
Scott Lee Delp

Assistive exoskeletons can reduce the metabolic cost of walking, and recent advances in exoskeleton device design and control have resulted in large metabolic savings. Most exoskeleton devices provide assistance at either the ankle or hip. Exoskeletons that assist multiple joints have the potential to provide greater metabolic savings, but can require many actuators and complicated controllers, making it difficult to design effective assistance. Coupled assistance, when two or more joints are assisted using one actuator or control signal, could reduce control dimensionality while retaining metabolic benefits. However, it is unknown which combinations of assisted joints are most promising and if there are negative consequences associated with coupled assistance. Since designing assistance with human experiments is expensive and time-consuming, we used musculoskeletal simulation to evaluate metabolic savings from multi-joint assistance and identify promising joint combinations. We generated 2D muscle-driven simulations of walking while simultaneously optimizing control strategies for simulated lower-limb exoskeleton assistive devices to minimize metabolic cost. Each device provided assistance either at a single joint or at multiple joints using massless, ideal actuators. To assess if control could be simplified for multi-joint exoskeletons, we simulated different control strategies in which the torque provided at each joint was either controlled independently or coupled between joints. We compared the predicted optimal torque profiles and changes in muscle and whole-body metabolic power consumption across the single joint and multi-joint assistance strategies. We found multi-joint devices--whether independent or coupled--provided 50% greater metabolic savings than single joint devices. The coupled multi-joint devices were able to achieve most of the metabolic savings produced by independently-controlled multi-joint devices. Our results indicate that device designers could simplify multi-joint exoskeleton designs by reducing the number of torque control parameters through coupling, while still maintaining large reductions in metabolic cost.


Author(s):  
T. Triwiyanto ◽  
Sari Luthfiyah Torib ◽  
S. Sumber ◽  
Andjar Pudji ◽  
Abd Kholiq ◽  
...  

A rehabilitation device for a post-stroke is essential because stroke attacks can cause disable to part or half of the human body. An exoskeleton could be a vital device for rehabilitation for a post-stroke patient. Several studies have proposed the exoskeleton design for rehabilitation purposes to a human limb disorder. This study aims to review the state-of-the-art of hand exoskeleton devices based on myoelectric or any other sensors. This paper is expected to contribute to design a hand exoskeleton device using both myoelectric and force sensors. This was achieved by reviewing several articles related to the development of the exoskeleton, especially in the sensor system, data processing, and actuator system. The results show that the use of Ag electrode disposable Ag (AgCl) is still commonly found to detect the movement of the fingers on the hand because this sensor can reduce the artifact noise. The use of myo-armband is also found in several studies because it has wireless properties so that it is easy to use. In terms of processors, Arduino microcontrollers are more widely used than others. In order to activate the hand exoskeleton, servo motors are more widely used to actuate the finger joints, which is more precise than other actuators. In a further development, integration between exoskeleton systems and information systems will be an expected challenge. Furthermore, hopefully, the development of this exoskeleton can be applied as a rehabilitation device for patients with malfunction or hand paralysis.


2021 ◽  
Vol 13 (1) ◽  
pp. 97-104
Author(s):  
Balakrishna Reddy KUNCHALA ◽  
Suresh GAMINI ◽  
Nagarjuna MAGULURI

Research in biomechanics has numerous applications including rehabilitation which helps in the fabrication of assistive devices. The Assistive devices or exoskeletons are used to serve the patients affected by stroke and spinal cord malfunctioning. These devices are programmed to follow a fixed redundant gait cycle and are lacking in producing natural movement of the gait. To overcome this limitation and make the device more user comfortable during usage of their daily life activities, a thorough study was done using an open source software that contributed to the design of exoskeleton device for the subject. In the current study, a simulation of various daily life activities are thoroughly studied using a musculoskeletal simulator package like OpenSim. The paper presents the observations of muscle responses from ground reaction forces with minimized metabolic cost function in various activities of daily living such as sitting to standing, standing to sitting, jumping, twisting suddenly while walking and turning suddenly. The study deliberates the inputs for developing more comfortable exoskeletons in performing tasks in a more sophisticated manner.


Author(s):  
Jiajia Yao ◽  
Takashi Sado ◽  
Wenli Wang ◽  
Jiawen Gao ◽  
Yichao Zhao ◽  
...  

Abstract Background Compared with traditional physical therapy for stroke patients, lower extremity exoskeletons can provide patients with greater endurance and more repeatable and controllable training, which can reduce the therapeutic burden of the therapist. However, most exoskeletons are expensive, heavy or require active power to be operated. Therefore, a lighter, easy to wear, easy to operate, low-cost technology for stroke rehabilitation would be a welcome opportunity for stroke survivors, caregivers and clinicians. One such device is the Kickstart Walk Assist system and the purpose of this study was to determine feasibility of using this unpowered exoskeleton device in a sample of stroke survivors. Methods Thirty stroke survivors were enrolled in the study and experienced walking with the Kickstart exoskeleton device that provided spring-loaded assistance during gait. After 5 days of wearing the exoskeleton, participants were evaluated in the two states of wearing and not wearing the exoskeleton. Outcome measures included: (a) spatio-temporal gait measures, (b) balance measures and (c) exoskeleton-use feedback questionnaire. Results In comparison to not wearing the device, when participants wore the Kickstart walking system, weight bearing asymmetry was reduced. The time spent on the 10-m walk test was also reduced, but there was no difference in the timed-up-and-go test (TUGT). Gait analysis data showed reduction in step time and double support time. Stroke survivors were positive about the Kickstart walking system’s ability to improve their balance, speed and gait. In addition, their confidence level and willingness to use the device was also positive. Conclusions These findings show the feasibility of using the Kickstart walking system for improving walking performance in stroke survivors. Our future goal is to perform a longer duration study with more comprehensive pre- and post-testing in a larger sample of stroke survivors. Trial registration Chinese Clinical Trial Registry, ChiCTR2000032665. Registered 5 May 2020—Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=53288


2021 ◽  
Author(s):  
Emily Triolo ◽  
Brett BuSha

Abstract BackgroundMany older Americans suffer from long-term upper limb dysfunction, decreased grip strength, and/or a reduced ability to hold objects due to injuries and a variety of age-related illnesses. The objective of this study was to design and build a five-fingered powered assistive exoskeleton for the human hand, and to validate its ability to augment the gripping and pinching efforts of the wearer and assist in performing ADLs. MethodsThe exoskeleton device was designed using CAD software and 3-D printed in ABS. Each finger’s movement efforts were individually monitored by a force sensing resistor at each fingertip, and proportionally augmented via the microcontroller-based control scheme, linear actuators, and rigid exoskeleton structure. The force production of the device and the force augmenting capability were assessed on ten healthy individuals include one 5-digit grasping test, three pinching tests, and two functional tests. ResultsUse of the device significantly decreased the forearm muscle activity necessary to maintain a grasping effort (67%,p<0.001), the larger of the pinching efforts (30%,p<0.05), and the palmer pinching effort (67%,p<0.001); however, no benefit by wearing the device was identified while maintaining a minimal pinching effort or attempting one of the functional tests. ConclusionThe exoskeleton device allowed subjects to maintain independent control of each digit, and while wearing the exoskeleton, in both the unpowered and powered states, subjects were able to grasp, hold, and move objects such as a water bottle, bag, smartphone, or dry-erase marker.


Sign in / Sign up

Export Citation Format

Share Document