cellular permeability
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Simon Ng ◽  
Alexander Brueckner ◽  
Soheila Bahmanjah ◽  
Qiaolin Deng ◽  
Jennifer Johnston ◽  
...  

STIP1 homology and U-Box containing protein 1 (STUB1) plays a key role in maintaining cell health during stress and aging. Recent evidence suggested STUB1 also helps regulate immunity with the potential of clearing malignant cells. Indeed, we and others have shown that STUB1 is a pivotal negative regulator of interferon gamma sensing – a process critical to the immunosurveillance of tumors and pathogens. Thus far, investigation of STUB1’s role relies mostly on genetic approaches as pharmacological inhibitors of this protein are lacking. Identification of a STUB1 tool compound is important as it would allow therapeutically relevant target validation in a broader sense. Accordingly, we leveraged phage display and computational modeling to identify and refine STUB1 binders. Screening of >10E9 macrocyclic peptides resulted in several conserved motifs as well as structurally diverse leads. Co-crystal structure of the peptide hit and STUB1 has enabled us to employ structure-based in silico design for further optimization. Of the modifications employed, replacing the hydrophilic solvent-exposed region of the macrocyclic peptides with a hydrophobic scaffold improved cellular permeability, while the binding conformation was maintained. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to certain extent while improving permeability, suggesting a path forward. The current lead, although not optimal for cellular study, provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7109
Author(s):  
Priti Tagde ◽  
Pooja Tagde ◽  
Fahadul Islam ◽  
Sandeep Tagde ◽  
Muddaser Shah ◽  
...  

Curcumin is the primary polyphenol in turmeric’s curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin’s bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.


2021 ◽  
Author(s):  
Syed Usama ◽  
Sierra Marker ◽  
Donald Caldwell ◽  
Nimit Patel ◽  
Yang Feng ◽  
...  

Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitively assess cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits dramatically in-creased cellular signal due to improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ~50X brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or non-hindered disulfides – an observation that is only apparent with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.


2021 ◽  
Author(s):  
Syed Usama ◽  
Sierra Marker ◽  
Donald Caldwell ◽  
Nimit Patel ◽  
Yang Feng ◽  
...  

Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitively assess cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits dramatically in-creased cellular signal due to improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ~50X brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or non-hindered disulfides – an observation that is only apparent with in vivo imaging. This strategy enables quantitative com-parisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.


Author(s):  
Subha Sankar Paul ◽  
Goutam Biswas

: Neurodegenerative diseases emerged as one of the major age-associated diseases in the recent years. Hence, the urge for understanding the mechanism and to find targeted therapeutics becomes inevitable. Peptide-based compounds emerged as one of the important tools for its therapy. But due to a lack of tolerability, specificity and proteolytic degradation, it loses its applicability in a wider sense. Thus, the search for suitable alternatives or peptidomimetics becomes an important criterion for neurotherapeutics. One of the versatile peptidomimetics are N-substituted glycines or Peptoids, which retain many properties of peptides but are successful in evading the drawbacks of peptides. Peptoids are manifested with greater cellular permeability, less immunogenicity and their ability to be administered intra-nasally. These properties enhance their potential as neurotherapeutics with respect to their peptide counterpart. Recently, peptoids have been explored towards neurotherapeutic applications as aggregation inhibitors, cell signaling pathways modulator, and as agents for inhibiting inflammations via multiple mechanisms. Peptoids, due to their versatility and low production cost, are becoming popular among peptidomimetics as potential neurotherapeutic agents. In this review, the diverse applications of peptoids with respect to neurodegenerative disease have been explored.


2021 ◽  
Vol 9 ◽  
Author(s):  
Carlotta Cecchini ◽  
Sara Pannilunghi ◽  
Sébastien Tardy ◽  
Leonardo Scapozza

Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional degraders that specifically eliminate targeted proteins by hijacking the ubiquitin-proteasome system (UPS). This modality has emerged as an orthogonal approach to the use of small-molecule inhibitors for knocking down classic targets and disease-related proteins classified, until now, as “undruggable.” In early 2019, the first targeted protein degraders reached the clinic, drawing attention to PROTACs as one of the most appealing technology in the drug discovery landscape. Despite these promising results, PROTACs are often affected by poor cellular permeability due to their high molecular weight (MW) and large exposed polar surface area (PSA). Herein, we report a comprehensive record of PROTAC design, pharmacology and thermodynamic challenges and solutions, as well as some of the available strategies to enhance cellular uptake, including suggestions of promising biological tools for the in vitro evaluation of PROTACs permeability toward successful protein degradation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2390
Author(s):  
Sunmi Lee ◽  
Jongbong Choi ◽  
Junghyun Kim ◽  
Yongwoo Jang ◽  
Tae Ho Lim

The transdermal delivery system of nutrients, cosmetics, and drugs is particularly attractive for painless, noninvasive delivery and sustainable release. Recently, atmospheric pressure plasma techniques have been of great interest to improve the drug absorption rate in transdermal delivery. Currently, plasma-mediated changes in the lipid composition of the stratum corneum are considered a possible mechanism to increase transdermal permeability. Nevertheless, its molecular and cellular mechanisms in transdermal delivery have been largely confined and still veiled. Herein, we present the effects of cold plasma on transdermal transmission on porcine skin and the cellular permeability of keratinocytes and further demonstrate the production of nitric oxide from keratinocytes. Consequently, argon plasma irradiation for 60 s resulted in 2.5-fold higher transdermal absorption of aniline blue dye on porcine skin compared to the nontreated control. In addition, the plasma-treated keratinocytes showed an increased transmission of high-molecular-weight molecules (70 and 150 kDa) with the production of nitric oxide. Therefore, these findings suggest a promoting effect of low-temperature plasma on transdermal absorption, even for high-molecular-weight molecules. Moreover, plasma-induced nitric oxide from keratinocytes is likely to regulate transdermal permeability in the epidermal layer.


2021 ◽  
Vol 118 (8) ◽  
pp. e1921960118
Author(s):  
Annalisa Rizza ◽  
Bijun Tang ◽  
Claire E. Stanley ◽  
Guido Grossmann ◽  
Markus R. Owen ◽  
...  

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.


Cell Stress ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Yudong Sun ◽  
Jason W. Locasale

S-adenosylmethionine (SAM) is a versatile metabolite that participates in a wide range of reactions such as methylation and transsulfuration. These capabilities allow SAM to influence cellular processes such as gene expression and redox balancing. The importance of SAM is highlighted by its widespread usage as an over-the-counter nutrient supplement and as an experimental reagent in molecular biology. The bioavailability and cellular transport properties of SAM, however, are often overlooked under these contexts, putting limits on SAM’s therapeutic potential and complicating the interpretation of experimental results. In this article, we examined the chemical stability and cellular permeability of SAM, proposed a schematic for indirect SAM transport across the mammalian plasma membrane, and lastly discussed the implications arising from such transport schematic.


RSC Advances ◽  
2021 ◽  
Vol 11 (51) ◽  
pp. 32000-32011
Author(s):  
Yeonjeong Ha ◽  
Yerim Koo ◽  
Seon-Kyung Park ◽  
Ga-Eun Kim ◽  
Han Bin Oh ◽  
...  

In this study, liposome leakage using different liposome compositions and increased cellular permeability of human lung monolayer models induced by PHMG and PHMB were investigated.


Sign in / Sign up

Export Citation Format

Share Document