photosynthesis and respiration
Recently Published Documents


TOTAL DOCUMENTS

654
(FIVE YEARS 62)

H-INDEX

58
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Min Lyu ◽  
Mengke Sun ◽  
Josep Peñuelas ◽  
Jordi Sardans ◽  
Jun Sun ◽  
...  

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (Topt), photosynthetic rate at Topt, temperature sensitivity (Q10), and the rate of respiration at a standard temperature of 25°C (R25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. Topt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.


2022 ◽  
Vol 8 ◽  
Author(s):  
Maayan Neder ◽  
Raoul Saar ◽  
Assaf Malik ◽  
Gilad Antler ◽  
Tali Mass

Scleractinian corals are evolutionary-successful calcifying marine organisms, which utilize an endo-symbiotic relationship with photosynthetic dinoflagellate algae that supply energy products to their coral hosts. This energy further supports a higher calcification rate during the day in a process known as light enhanced calcification. Although this process has been studied for decades, the mechanisms behind it are still unknown. However, photosynthesis and respiration also cause daily fluctuations in oxygen and pH levels, resulting in the coral facing highly variable conditions. Here we correlated gene expression patterns with the physiological differences along the diel cycle to provide new insights on the daily dynamic processes, including circadian rhythm, calcification, symbiosis, cellular arrangement, metabolism, and energy budget. During daytime, when solar radiation levels are highest, we observed increased calcification rate combined with an extensive up-regulation of genes associated with reactive oxygen species, redox, metabolism, ion transporters, skeletal organic matrix, and mineral formation. During the night, we observed a vast shift toward up-regulation of genes associated with cilia movement, tissue development, cellular movement, antioxidants, protein synthesis, and skeletal organic matrix formation. Our results suggest that light enhanced calcification is related to several processes that occur across the diel cycle; during nighttime, tissue might elevate away from the skeleton, extending the calcifying space area to enable the formation of a new organic framework template. During daytime, the combination of synthesis of acid-rich proteins and a greater flux of ions to the sites of calcification facilitate the conditions for extensive mineral growth.


2022 ◽  
pp. 4-17
Author(s):  
T. M. DeJong

Abstract This chapter focuses on energy capture and carbon assimilation of fruit trees. It discusses the factors affecting photosynthesis and respiration, including temperature, carbon dioxide concentration, nutrient supply, water availability, oxygen, and carbohydrates.


2022 ◽  
pp. 79-100
Author(s):  
Prajjal Dey ◽  
Diptanu Datta ◽  
Debasish Pattnaik ◽  
Deepali Dash ◽  
Debanjana Saha ◽  
...  

2022 ◽  
Vol 42 ◽  
pp. 01023
Author(s):  
Vladimir Kreslavski ◽  
Anatoly Ivanov ◽  
Alexander Shmarev ◽  
Alexandra Khudyakova ◽  
Anatoly Kosobryukhov

More and more attention is paid to the development of technologies using iron nanoparticles in agriculture. In this regard, the effect of treatment of wheat seeds with various concentrations of iron nanoparticles Fe3O4 and Fe2O3 on the accumulation of biomass, the rate of photosynthesis and respiration, as well as on photochemical activity and antioxidant balance was studied. The seeds were treated for 3 h, germinated for 2 days in Petri dishes, transplanted into sand and grown under light for 18 days without mineral nutrition until the third leaf appeared. At a Fe3O4 concentration of 200 mg L-1 a significant increase in the dry biomass of the second leaf by 45% and the rate of photosynthesis by 16% was observed. At a concentration of nanoparticles in the form of Fe2O3 of 200 and 500 mg L-1, an increase in the rate of photosynthesis in the second leaf was also observed, but not in the biomass of the leaves. The activity of photosystem 2, estimated from the Fv/Fm value, also increased in experiments with nanoiron. However, the activity of antioxidant enzymes, guaiacol-dependent peroxidase and superoxide dismutase, decreased. It is assumed that the acceleration of growth at an early stage of wheat development is associated with an increase in photosynthetic processes.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3284
Author(s):  
Pavel Pashkovskiy ◽  
Vladimir D. Kreslavski ◽  
Yury Ivanov ◽  
Alexandra Ivanova ◽  
Alexander Kartashov ◽  
...  

Varying the spectral composition of light is one of the ways to accelerate the growth of conifers under artificial conditions for the development of technologies and to obtain sustainable seedlings required to preserve the existing areas of forests. We studied the influence of light of different quality on the growth, gas exchange, fluorescence indices of Chl a, and expression of key light-dependent genes of Pinus sylvestris L. seedlings. It was shown that in plants growing under red light (RL), the biomass of needles and root system increased by more than two and three times, respectively, compared with those of the white fluorescent light (WFL) control. At the same time, the rates of photosynthesis and respiration in RL and blue light (BL) plants were lower than those of blue red light (BRL) plants, and the difference between the rates of photosynthesis and respiration, which characterizes the carbon balance, was maximum under RL. RL influenced the number of xylem cells, activated the expression of genes involved in the transduction of cytokinin (Histidine-containing phosphotransfer 1, HPT1, Type-A Response Regulators, RR-A) and auxin (Auxin-induced protein 1, Aux/IAA) signals, and reduced the expression of the gene encoding the transcription factor phytochrome-interacting factor 3 (PIF3). It was suggested that RL-induced activation of key genes of cytokinin and auxin signaling might indicate a phytochrome-dependent change in cytokinins and auxins activity.


2021 ◽  
pp. 27-34
Author(s):  
Ranjan Kumar Sahoo ◽  
Madhusmita Pradhan ◽  
Manjulata Palei ◽  
Sagar Maitra

Sign in / Sign up

Export Citation Format

Share Document