cell transition
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 42)

H-INDEX

35
(FIVE YEARS 5)

Cell ◽  
2021 ◽  
Author(s):  
Charly R. Good ◽  
M. Angela Aznar ◽  
Shunichiro Kuramitsu ◽  
Parisa Samareh ◽  
Sangya Agarwal ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4302
Author(s):  
Eugenia Roupakia ◽  
Evangelia Chavdoula ◽  
Georgia Karpathiou ◽  
Giannis Vatsellas ◽  
Dimitrios Chatzopoulos ◽  
...  

Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.


2021 ◽  
Author(s):  
Hua Yu ◽  
Zhen Sun ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
Jing Zhao ◽  
...  

Nucleolus is the organelle for ribosome biogenesis and for sensing various types of stress. Its role in regulating stem cell fate is unclear. Here, we present multiple lines of evidence that nucleolar stress induced by interfering rRNA biogenesis can drive 2-cell stage embryo-like (2C-like) transcriptional program and induce an expanded 2C-like cell population in mouse embryonic stem (mES) cells. Mechanistically, the nucleolar integrity mediated by rRNA biogenesis maintains the normal liquid-liquid phase separation (LLPS) of nucleolus and the formation of peri-nucleolar heterochromatin (PNH). Upon rRNA biogenesis defect, the natural LLPS of nucleolus is disrupted, causing dissociation of NCL/TRIM28 complex from PNH and changes of epigenetic states and reorganization of the 3D structure of PNH, which leads to Dux, a 2C program transcription factor gene, to be released from the PNH region and activation of 2C-like program. Correspondingly, embryos with rRNA biogenesis defect are incompatible to develop from 2-cell (2C) to 4-cell embryos, with delayed repression of 2C/ERV genes and a transcriptome skewed toward earlier cleavage embryo signatures. Our results highlight that rRNA-mediated nucleolar integrity and 3D structure reshaping of PNH compartment regulates the fate transition of mES cells to 2C-like cells, and that rRNA biogenesis is a critical regulator during the 2-cell-to-4-cell transition of murine pre-implantation embryo development.


Author(s):  
Yao Chen ◽  
Ryan A. Zander ◽  
Xiaopeng Wu ◽  
David M. Schauder ◽  
Moujtaba Y. Kasmani ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Cimadomo ◽  
F Innocenti ◽  
D Soscia ◽  
A Giancani ◽  
R Maggiulli ◽  
...  

Abstract Study question How common abnormal cleavage patterns (ACP) are in IVF and what are their consequences on embryo developmental competence? Summary answer ACP might affect up to 25% of the 2PN-zygotes, independently from patients’/cycles’ characteristics, and mostly cause embryo developmental arrest around the 4-to–8-cell transition. What is known already Since its implementation in IVF, time-lapse-microscopy (TLM) allowed the standardization of embryo culture within undisturbed incubators, but it has not improved embryo selection especially if blastocyst transfer is performed. Nevertheless, TLM holds the potential for boosting our knowledge of embryo preimplantation development. In particular, a continuous observation of embryo morpho-dynamics unveiled peculiar blastomere cleavage patterns previously unidentifiable with a static morphological assessment. These events are possibly associated with massive mitotic errors, affecting both chromosomes and cytoskeletal components, as well as downstream metabolic imbalances. Still, the causes of ACP and their consequences on embryo developmental/reproductive competence require further investigation. Study design, size, duration Observational study including 75 patients (age:38.6±3.7yr, FSH:8.8±3.6IU/l, AMH:1.7±1.3ng/ml; BMI:21.4±2.4) who conducted multiple IVF cycles (N = 160; 8.7±5.0 cumulus-oocyte-complexes and 6.3±3.6 metaphase-II collected; 201±245 days between first and second cycles) in a time-lapse incubator between 2014–2020. All annotations were performed blindly by two operators and confirmed by a third in case of discordance. The outcomes were the blastulation rate after any ACP, their association between each other and with patients’/cycles’ characteristics. Participants/materials, setting, methods We included only ICSI-cycles after ovarian-stimulation with blastocyst culture conducted in the Embryoscope. Overall, 981 metaphase-II were inseminated and 677 2PN-zygotes annotated. The ACP investigated were: (i)cytokinesis-failure, formation of cytoplasmic septa without cell division; (ii)Chaotic-cleavage, disordered and uneven cleavages; (iii)Direct-unequal-cleavage (DUC), cleavage of zygotes or single blastomeres directly into 3; (iv)Rapid-cleavage, t3-t2<5hr; (v)Reverse-cleavage, fusion of 2 blastomeres into 1; (vi)Fragmentation, presence of numerous non-nucleated fragments; (vii)Blastomeres’ exclusion/extrusion, nucleated cells excluded/extruded from the morula. Main results and the role of chance Among the 2PN-zygotes, the prevalence of cytokinesis-failure was 5.9% (N = 40/677), 15.7% for chaotic-cleavage (N = 106/677), 18.6% for DUC (N = 126/677), 4.1% for rapid-cleavage (N = 28/677), 3.5% for reverse-cleavage (N = 24/677) and 24.1% for fragmentation (N = 163/677). Among the morulae, the prevalence of blastomere exclusion/extrusion was 27% (N = 109/410;1.5±1.2 excluded/extruded cells,range:1–7). The risk for reverse-cleavage was higher among 2PN-zygotes facing failed-cytokinesis (N = 8/40,20% versus N = 16/637,2.5%, OR:9.7,95%CI:3.9–24.3,p<0.01). Fragmentation was instead higher among 2PN-zygotes undergoing chaotic cleavage (N = 47/106,44.3% versus N = 116/571,20.3%, OR:3.1,95%CI:2–4.8,p<0.01) or DUC (N = 46/126,36.5% versus N = 117/551,21.2%, OR:2.1,95%CI:1.4–3.2,p<0.01). Lastly, higher prevalence of blastomeres’ exclusion/extrusion were reported among morulae obtained after chaotic-cleavage (N = 17/29,58.6% versus N = 92/381,24.1%, OR:4.4,95%CI:2–9.7,p<0.01), DUC (N = 26/37,70.3% versus N = 83/373,22.3%, OR:8.3,95%CI:3.9–17.4,p<0.01) and in presence of fragmentation (N = 79/195,75.2% versus N = 30/305,9.8%, OR:27.8,95%CI:15.6–49.8,p<0.01); only a higher trend after rapid-/reverse-cleavage. No predictive factor of ACP was identified among patients’ and cycles’ characteristics, except for higher risks of fragmentation (OR:2.6,95%CI:1.1–6.3,p= 0.04) and blastomeres’ exclusion/extrusion (OR:2.7,95%CI:1.1–7.2,p=0.04) among patients with previous experience with these events. The viable-blastocyst rate per 2PN-zygote was 45.1% (N = 305/677). It was lower in case of failed-cytokinesis (N = 12/40,30% versus N = 293/637,46%, OR:0.5,95%CI:0.25–0.99,p=0.05), chaotic cleavage (N = 20/106,18.9% versus N = 285/571,49.9%, OR:0.23,95%CI:0.14–0.39,p<0.01), DUC (N = 27/126,21.4% versus N = 278/551,50.5%, OR:0.27,95%CI:0.17–0.42,p<0.01), rapid-cleavage (N = 6/22,21.4% versus N = 299/649,46.1%, OR:0.32,95%CI:0.13–0.8,p=0.02), and reverse-cleavage (N = 5/19,20.8% versus N = 300/653,45.9%, OR:0.31, 95%CI:0.11–0.84,p=0.02). No difference was instead shown in case of fragmentation and/or blastomeres’ exclusion/extrusion. Limitations, reasons for caution The patients included were poor-prognosis women undergoing ≥2 cycles. We are expanding the sample size to account for all cycles conducted in time-lapse incubators. Larger sample size will provide also statistical-power to investigate the effect of ACP on blastocysts’ chromosomal and implantation competence, and more visualizations of rapid-/reverse-cleavage events. Wider implications of the findings: After ACP,developmental-arrest mostly occurs around the 4-to–8-cell transition (50–70% versus ∼30%), when embryonic-genome-activation takes place. Surviving embryos often fragment and/or exclude/extrude blastomeres at morulation, without further impact on blastulation-rates. Moreover, ACP seem independent from patients’/cycles’ characteristics. These evidence incite future Research on the biological/genetic mechanisms triggering ACP and their consequences. Trial registration number None


Author(s):  
Ourlad Alzeus G. Tantengco ◽  
Lauren S. Richardson ◽  
Joy Vink ◽  
Talar Kechichian ◽  
Paul Mark B. Medina ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Yuan ◽  
Jiao Mu ◽  
Zijun Wang ◽  
Shuaijun Ma ◽  
Xiuwei Da ◽  
...  

AbstractSolute carrier family 25 member 20 (SLC25A20) is a mitochondrial-membrane–carrier protein involved in the transport of acylcarnitines into mitochondrial matrix for oxidation. A previous-integrated-proteogenomic study had identified SLC25A20 as one of the top-three prognostic biomarkers in HCC. However, the expression and the biological function of SLC25A20 have not yet been investigated in HCC. In the present study, we found that SLC25A20 expression is frequently down-regulated in HCC cells mainly due to the up-regulation of miR-132-3p. Down-regulation of SLC25A20 is associated with a poor prognosis in patients with HCC. SLC25A20 suppressed HCC growth and metastasis, both in vitro and in vivo, by suppression of G1–S cell transition, epithelial-to-mesenchymal transition (EMT), and induction of cell apoptosis. Mechanistically, SLC25A20 down-regulation promoted HCC growth and metastasis through suppression of fatty-acid oxidation. Altogether, SLC25A20 plays a critical tumor-suppressive role in carcinogenesis of HCC; SLC25A20 may serve as a novel prognostic factor and therapeutic target for patients with HCC.


Sign in / Sign up

Export Citation Format

Share Document