effective multiplication factor
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 0)

2022 ◽  
Vol 167 ◽  
pp. 108743
Author(s):  
Rudnei Dias da Cunha ◽  
Liliane Basso Barichello ◽  
Jayme Andrade Neto ◽  
Rodrigo Zanette

Kerntechnik ◽  
2021 ◽  
Vol 86 (4) ◽  
pp. 302-311
Author(s):  
M. E. Korkmaz ◽  
N. K. Arslan

Abstract Sodium Cooled Reactors is one of the Generation-IV plants selected to manage the long-lived minor actinides and to transmute the long-life radioactive elements. This study presents the comparison between two-designed SFR cores with 600 and 800 MWth total heating power. We have analyzed a conceptual core design and nuclear characteristic of SFR. Monte Carlo depletion calculations have been performed to investigate essential characteristics of the SFR core. The core calculations were performed by using the Serpent Monte Carlo code for determining the burnup behavior of the SFR, the power distribution and the effective multiplication factor. The neutronic and burn-up calculations were done by means of Serpent-2 Code with the ENDF-7 cross-sections library. Sodium Cooled Fast Reactor core was taken as the reference core for Th-232 burnup calculations. The results showed that SFR is an important option to deplete the minor actinides as well as for transmutation from Th-232 to U-233.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 229-235
Author(s):  
Y. Alzahrani ◽  
K. Mehboob ◽  
F. A. Abolaban ◽  
H. Younis

Abstract In this study, the Doppler reactivity coefficient has been investigated for UO2, MOX, and (Th/U)O2 fuel types. The calculation has been carried out using the Monte Carlo method ( OpenMC). The effective multiplication factor keff has been evaluated for three materials with four different configurations without Integral Fuel Burnable Absorber (IFBA) rods and soluble boron. The results of MOX fuel, homogenous and heterogeneous thorium fuel configuration has been compared with the core of the reference fuel assembly (UO2). The calculation showed that the effective multiplication factor at 1 000 K was 1.26052, 1.14254, 1.22018 and 1.23771 for reference core, MOX, homogenous and heterogeneous configurations respectively. The results shows that reactivity has decreased with increasing temperature while the doppler reactivity coefficient remained negative. Moreover, the use of (Th/U)O2 homogenous and heterogeneous configuration had shown an improved response compared to the reference core at 600 K and 1 000 K. The doppler reactivity coefficient has been found as –8.98E-3 pcm/K, -0.8 655 pcmK for the homogenous and –8.854 pcm/K, -1.2253 pcm/K for the heterogeneous configuration. However, the pattern remained the same as for the reference core at other temperature points. MOX fuel has shown less response compared to the other fuel configuration because of the high resonance absorption coefficient of Plutonium. This study showed that the SMART reactor could be operated safely with investigated fuel and models.


2021 ◽  
Vol 7 (1) ◽  
pp. 102
Author(s):  
Dwi Irwanto ◽  
Nining Yuningsih

High-Temperature Gas Reactor (HTGR) is a type of reactor that continues to be developed because of its advantages in terms of economic aspects, proliferation resistance, and safety aspects. One of the safety aspect improvements is due to the use of the Coated Fuel Particle (CFP). A coated fuel particle is a fuel with a diameter smaller than 1 mm and is protected by several carbon layers. In the Pebble Bed Reactor (PBR) type of HTGR design, the CFP is placed in a 6 cm fuel ball. How much CFP is put into the fuel ball will determine the neutronic characteristics of the reactor. In this study, the effect of the amount of CFP in the fuel ball on the 25 MWt PBR design using Thorium fuel and its impact on several important neutronic aspects, such as the effective multiplication factor, the amount of fuel enrichment, the utilization of fissile material, and the density of the fissile material formed. The calculation was performed by the Monte Carlo MVP / MVP-BURN code. This study found that the coated fuel particle fraction of 15% was the optimum value for the studied neutronic parameters.


2021 ◽  
Vol 247 ◽  
pp. 17002
Author(s):  
Shouhei Araki ◽  
Yuichi Yamane ◽  
Taro Ueki ◽  
Totaro Tonoike

We investigated the effect of β on effective multiplication factor(keff) in the 1/fβ spectrum random system. The random system was generated by the 1/fβ noise model. The model is a continuous space model based on the Randomized Weierstrass function and describes the component spatial distribution with a power spectrum of 1/fβ, where f and β are the frequency domain variable and the characteristic parameter related to randomness, respectively. In this work, the two-group Monte Carlo calculations were performed to obtain the keff for a simple cubic geometry that consisted of two materials (fuel burned to 12 GWd/t and concrete). A large number of replicas having different spatial distribution and characterized by the representative β values were generated using the model, and the distribution on keff was analyzed. We found the dependency on β of standard deviation, skewness, and kurtosis of keff distribution. This result is expected to help to predict the keff distribution due to the randomizing model.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Yizhen Wang ◽  
Menglei Cui ◽  
Jiong Guo ◽  
Jinlin Niu ◽  
Yingjie Wu ◽  
...  

Uncertainty analyses of fission product yields are indispensable in evaluating reactor burnup and decay heat calculation credibility. Compared with neutron cross section, there are fewer uncertainty analyses conducted and it has been a controversial topic by lack of properly estimated covariance matrix as well as adequate sampling method. Specifically, the conventional normal-based sampling method in sampling large uncertainty independent fission yields could inevitably generate nonphysical negative samples. Cutting off these samples would introduce bias into uncertainty results. Here, we evaluate thermal neutron-induced U-235 independent fission yields covariance matrix by the Bayesian updating method, and then we use lognormal-based sampling method to overcome the negative fission yields samples issue. Fission yields uncertainty contribution to effective multiplication factor and several fission products’ atomic densities at equilibrium core of pebble-bed HTGR are quantified and investigated. The results show that the lognormal-based sampling method could prevent generating negative yields samples and maintain the skewness of fission yields distribution. Compared with the zero cut-off normal-based sampling method, the lognormal-based sampling method evaluates the uncertainty of effective multiplication factor and atomic densities are larger. This implies that zero cut-off effect in the normal-based sampling method would underestimate the fission yields uncertainty contribution. Therefore, adopting the lognormal-based sampling method is crucial for providing reliable uncertainty analysis results in fission product yields uncertainty analysis.


2020 ◽  
Vol 6 (3) ◽  
pp. 161-166
Author(s):  
Alexander N. Pisarev ◽  
Valerii V. Kolesov

The key papers on estimating the uncertainties in nuclear data deal with the influence of these uncertainties on the effective multiplication factor by introducing the so-called sensitivity factors and only some of these are concerned with the influence of such uncertainties on the life calculation results. On the other hand, the uncertainties in reaction rates, the neutron flux, and other quantities may lead to major distortions in findings, this making it important to be able to determine the influence of uncertainties on the nuclear concentrations of nuclides in their burn-up process. The possibility for the neutron flux and reaction rate uncertainties to propagate to the nuclear concentrations of nuclides obtained as part of burn-up calculations are considered using an example of a MOX-fuel PWR reactor cell. To this end, three burn-up calculation cycles were performed, and the propagation of uncertainties was analyzed. The advantages of the uncertainty estimation method implemented in the VisualBurnOut code consists in that all root-mean-square deviations are obtained as part of one calculation as the statistical method, e.g. GRS (Generation Random Sampled), requires multiple calculations. The VisualBurnOut calculation results for the root-mean-square deviations in nuclear concentrations were verified using a simple model problem. It is shown that there is a complex dependence of the propagation of the root-mean-square deviations in the nuclear concentrations of nuclides in the process of fuel burn-up, and, therefore, further studies need to aim at investigating the influence of uncertainties in nuclear data on the nuclear concentrations of nuclides.


2020 ◽  
Vol 1 (1) ◽  
pp. 12-16
Author(s):  
Mutia Utari ◽  
◽  
Yanti Yulianti ◽  
Agus Riyanto ◽  
◽  
...  

The Research about the design of high temperature helium gas-cooled reactor (HTGR) terraces with thorium fuel recycled using the SRAC program has been completed. This research includes the percentage of fuel enrichment, reactor core size, reactor core configuration, criticality, and the distribution of the power density. The calculation of reactor core is done in two dimensions \sfrac{1}{6} hexagonal terrace section with a triangular mesh. The fuel is used, i.e. thorium with a burn-up of 20 GWd/t and 30 GWd/t, and helium gas as a cooler. The results obtained in this study show that the ideal HTGR reactor core design with reactor core size and configuration are (x) 22 cm at point (y) = 2035,05 cm and at (y) 11 cm at point (x) = 2035,05 cm, then enrichment in fuel 8%. The result of maximum power density is 550.3685 Watt/cm3 where the position at (x) = 22 cm and axis (y) = 11 with the effective multiplication factor value keff of 1,0000002.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
J. Galicia-Aragón ◽  
R. Raya-Arredondo ◽  
H. S. Cruz-Galindo

Abstract The value of βeff for Training Research Isotopes of General Atomics (TRIGA) Mark III reactor, belonging to the National Institute of Nuclear Researches (ININ), is reported. The TRIGA Mark III reactor core was simulated with MCNP6 to deduce the effective multiplication factor (keff) for critical state and after a small insertion of positive reactivity (∼0.20 $). To perform more realistic simulations, we had to incorporate in the composition of the low-enrichment uranium (LEU) fuel element the produced poisons in a time period of six years, considering the operation time in days, during which the reactor was operating at maximum power (1 MWth). The calculation of the βeff value was obtained with the keff results, calculated with the code, and the reactor periods measured experimentally. We also obtained directly the βeff value, through the card of MCNP6 to calculate keff (KOPTS) card of the MCNP6 code in order to compare both values.


Author(s):  
Ratna Dewi Syarifah ◽  
Alvi Nur Sabrina

A study of Neptunium, Americium, and Protactinium addition for GFR 300MWth with Uranium Carbide fuel has been performed. The purpose of this study was to determine the characteristics of addition Neptunium, Americium, and Protactinium in a 300MWth Gas-Cooled Fast Reactor. Neutronics calculation was design by using Standard Reactor Analysis Code (SRAC) version 2006 with data nuclides from JENDL-4.0. Neutronics calculations were initiated by calculating the fuel cell calculation (PIJ calculation) and continued with the reactor core calculation (CITATION calculation). The reactor core calculation used two-reactor core configurations, namely the homogeneous core configuration and heterogeneous core configuration. The Neptunium, Americium, and Protactinium additions were performed after obtaining the optimal condition from heterogeneous core configuration. The addition of Neptunium and Americium which are Spent Nuclear Fuel (SNF) from LWR fuels, aims to reduce the amount of Neptunium and Americium in the world and also to reduce the effective multiplication factor (k-eff) value from the reactor. The results obtained that the addition of Neptunium and Americium causes the k-eff value was decreased at the beginning of burn-up time, but increase at the end of burn-up time. It was because Neptunium and Americium absorb neutrons at the beginning of burn-up time and turns into fissile material at the end of burn-up time. The addition of protactinium in the reactor causes the k-eff value to be decreased both at the beginning of the burn-up time and at the end of the burn-up time. It happens because Protactinium absorbs neutrons both at the beginning of the burn-up time and at the end of the burn-up time. Therefore protactinium is often called a burnable poison.


Sign in / Sign up

Export Citation Format

Share Document