aerosol extinction coefficient
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 37)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Soumyajyoti Jana ◽  
Gargi Rakshit ◽  
Animesh Maitra

Abstract The elevated layer of heat-absorbing pollutant aerosols causes temperature perturbations in the pre-monsoon period above the boundary layer height (1.6-4 km) as observed over a polluted tropical urban location Kolkata (22°34' N, 88°22' E) during 2007-2016. Satellite observations of different types of aerosols show an increase in aerosol extinction coefficient around 1.6-4 km altitude, enhancing the perturbations in both temperature and wind profiles at that height. The opposing air mass movement within and above the boundary layer, which is strengthened by elevated heat-absorbing aerosols, is illustrated by height profiles of atmospheric vorticity and divergence. This results in higher Brunt-Vaisala frequencies indicating increased atmospheric oscillations. Consequently, atmospheric gravity waves, which manifest the temperature and wind profile perturbations, have enhanced energy in the upper troposphere (6-10 km). Based on multi- technique observations consisting of radiosonde, space-borne lidar and model data, this study reveals the interactions between aerosol and other atmospheric processes such as temperature variations and wind perturbations, which affect the atmospheric instability and increase gravity wave activities during the pre-monsoon period over a tropical metropolis.


2021 ◽  
pp. 1-7
Author(s):  
Jaromir Petrzala

Abstract Aerosol particles spread in the atmosphere play an important role in solar light scattering and thus co-determine the sky radiance/luminance pattern as well as diffuse irradiances/illuminances at the ground. The particular influence is given by their optical properties and by their distribution in the atmosphere. The dependence of the aerosol extinction coefficient on altitude is usually described by the exponential law, which results from averaging of a large amount of aerosol realizations. This is also frequently the case of simulating of the solar diffuse radiance/luminance distribution over the sky, when it is based on solving the radiative transfer problem. However, the aerosol vertical profile can sometimes be significantly different from the exponential one. Mainly in the urban environment, the aerosol is often well-mixed within the atmospheric boundary layer, so its volume extinction coefficient is almost constant there. This work investigates how such different profiles affect the clear sky radiance pattern and consequently also the ground-based horizontal diffuse irradiance. The numerical simulations reveal that the discrepancies are negligible in practice. So it appears that the aerosol vertical distribution does not play any important role in sky radiance calculations and the standard exponential law is general enough to cover also various specific aerosol conditions.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7282
Author(s):  
Dukhyeon Kim ◽  
Youngmin Noh

Images based on RGB pixel values were used to measure the extinction coefficient of aerosols suspended in an atmospheric state. The pixel values of the object-image depend on the target-object reflection ratio, reflection direction, object type, distances, illumination intensity, atmospheric particle extinction coefficient, and scattering angle between the sun and the optical axes of the camera, among others. Therefore, the imaged intensity cannot directly provide information on the aerosol concentration or aerosol extinction coefficient. This study proposes simple methods to solve this problem, which yield reasonable extinction coefficients at the three effective RGB wavelengths. Aerosol size information was analogized using the RGB Ångström exponent measured at the three wavelengths for clean, dusty, rainy, Asian dust storm, and foggy days. Additionally, long-term measurements over four months showed reasonable values compared with existing PM2.5 measurements and the proposed method yields useful results.


2021 ◽  
Vol 21 (19) ◽  
pp. 15309-15336
Author(s):  
Ke Gui ◽  
Huizheng Che ◽  
Yu Zheng ◽  
Hujia Zhao ◽  
Wenrui Yao ◽  
...  

Abstract. Globally gridded aerosol extinction data from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) during 2007–2019 are utilized to investigate the three-dimensional (3D) climatological distribution of tropospheric type-dependent aerosols and to identify the trends in column aerosol optical depth (AOD), partitioned within different altitude regimes, and their meteorological drivers. Using detection samples of layer aerosols, we also yield a 3D distribution of the frequency of occurrence (FoO) of aerosol subtypes classified by CALIOP. The results show that the aerosol extinction coefficient (AEC) shows contrasting vertical distribution patterns over land and ocean, with the former possessing significant geographical dependence, while the enhancement of AEC in the latter is mainly located below 1 km. The vertical structures of the type-dependent AECs, however, are strongly dependent on altitude. When the total AOD (TAOD) is partitioned into the planetary boundary layer (PBL) and the free troposphere (FT), results demonstrate that the PBL and FT contribute 62.08 % and 37.92 %, respectively, of the global tropospheric TAOD averaged over daytime and nighttime. Yet this CALIOP-based partitioning of the different aerosol subtypes in the PBL and FT varies significantly. Among all 12 typical regions of interest analyzed, more than 50 % of TAOD is located in the lower troposphere (0–2 km), while the contribution is less than 2 % above 6 km. In global average terms, we found the aerosol FoO averaged over all layers is 4.45 %, with the largest contribution from “clean marine” (1.79 %) and the smallest from “clean continental” (0.05 %). Overall, the FoO vertical structures of the aerosol layer exhibit a distribution pattern similar to that of AEC. The resulting trend analyses show that CALIOP accurately captures significant regional anomalies in TAOD, as observed in other satellite measurements and aerosol reanalysis. Our correlation analysis between meteorological factors and TAOD suggests the interannual variability of TAOD is related to the variability of precipitation (PPT), volumetric soil moisture (VSM), and wind speed (WS) in the particular regions. For instance, the positive TAOD trend over the equatorial central Pacific is mainly attributable to the increased PPT and decreased WS. In contrast, in dry convective regions dominated by dust and smoke, the interannual variability/trend in TAOD is largely modified by the VSM driven by the PPT. Additionally, we further found that these significant regional correlations are more robust within the PBL and significantly weakened or even reversed within the FT. This highlights the superiority of using the TAOD partitioned within the PBL as a proxy variable for the widely applied TAOD to explore the relationships between atmospheric pollution and meteorology.


2021 ◽  
Vol 21 (19) ◽  
pp. 14871-14891
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Ulrike Niemeier ◽  
Sandra Wallis ◽  
Carlo Arosio ◽  
...  

Abstract. Stratospheric aerosols are an important component of the climate system. They not only change the radiative budget of the Earth but also play an essential role in ozone depletion. These impacts are particularly noticeable after volcanic eruptions when SO2 injected with the eruption reaches the stratosphere, oxidizes, and forms stratospheric aerosol. There have been several studies in which a volcanic eruption plume and the associated radiative forcing were analyzed using climate models and/or data from satellite measurements. However, few have compared vertically and temporally resolved volcanic plumes using both measured and modeled data. In this paper, we compared changes in the stratospheric aerosol loading after the 2018 Ambae eruption observed by satellite remote sensing measurements and simulated by a global aerosol model. We use vertical profiles of the aerosol extinction coefficient at 869 nm retrieved at the Institute of Environmental Physics (IUP) in Bremen from OMPS-LP (Ozone Mapping and Profiling Suite – Limb Profiler) observations. Here, we present the retrieval algorithm and a comparison of the obtained profiles with those from SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on board the International Space Station). The observed differences are within 25 % for most latitude bins, which indicates a reasonable quality of the retrieved limb aerosol extinction product. The volcanic plume evolution is investigated using both monthly mean aerosol extinction coefficients and 10 d averaged data. The measurement results were compared with the model output from MAECHAM5-HAM (ECHAM for short). In order to simulate the eruption accurately, we use SO2 injection estimates from OMPS and OMI (Ozone Monitoring Instrument) for the first phase of eruption and the TROPOspheric Monitoring Instrument (TROPOMI) for the second phase. Generally, the agreement between the vertical and geographical distribution of the aerosol extinction coefficient from OMPS-LP and ECHAM is quite remarkable, in particular, for the second phase. We attribute the good consistency between the model and the measurements to the precise estimation of injected SO2 mass and height, as well as to the nudging to ECMWF ERA5 reanalysis data. Additionally, we compared the radiative forcing (RF) caused by the increase in the aerosol loading in the stratosphere after the eruption. After accounting for the uncertainties from different RF calculation methods, the RFs from ECHAM and OMPS-LP agree quite well. We estimate the tropical (20∘ N to 20∘ S) RF from the second Ambae eruption to be about −0.13 W m−2.


2021 ◽  
Vol 13 (16) ◽  
pp. 3085
Author(s):  
Zhaoliang Zeng ◽  
Zemin Wang ◽  
Baojun Zhang

The verification and correction of CALIPSO aerosol products is key to understanding the atmospheric environment and climate change. However, CALIPSO often cannot detect the full profile of aerosol for the low instrument sensitivity near the surface. Thus, a correction scheme for the aerosol extinction coefficient (AECs) in the planetary boundary layer (PBL) is proposed to improve the quality of the CALIPSO-based aerosol optical depth (AOD) at 532 nm. This scheme assumed that the aerosol is vertically and uniformly distributed below the PBL, and that the AECs in the whole PBL are equal to those at the top of the PBL; then, the CALIPSO AOD was obtained by vertically integrating AECs throughout the whole atmosphere. Additionally, the CALIPSO AOD and corrected CALIPSO AOD were validated against seven ground-based sites across eastern China during 2007–2015. Our results show that the initial CALIPSO AOD obtained by cloud filtering was generally lower than that of the ground-based observations. After accounting for the AECs in the PBL, the adjustment method tended to improve the CALIPSO AOD data quality. The average R (slope) value from all sites was improved by 7% (46%). Further, the relative distance between the ground track of CALIPSO and the ground station exhibited an influence on the validation result of CALIPSO AOD. The retrieval precision of CALIPSO AOD worsened with the increase in water vapor in the atmosphere. Our findings indicate that our scheme significantly improves the accuracy of CALIPSO AOD, which will help to provide alternative AOD products in the presence of severe atmospheric pollution.


2021 ◽  
Author(s):  
Ke Gui ◽  
Huizheng Che ◽  
Yu Zheng ◽  
Hujia Zhao ◽  
Wenrui Yao ◽  
...  

Abstract. Globally gridded aerosol extinction data from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) during 2007–2019 are utilized to investigate the three-dimensional (3D) climatological distribution of tropospheric type-dependent aerosols, and to identify the trends in column aerosol optical depth (AOD), partitioned within different altitude regimes, and their meteorological drivers. Using detection samples of layer aerosols, we also yield a 3D distribution of the frequency-of-occurrence (FoO) of aerosol sub-types classified by CALIOP. The results show that the aerosol extinction coefficient (AEC) shows contrasting vertical distribution patterns over land and ocean, with the former possessing significant geographical dependence, while the enhancement of AEC in the latter is mainly located below 1 km. The vertical structures of the type-dependent AECs, however, are strongly dependent on altitude. When the total AOD (TAOD) is partitioned into the planetary boundary layer (PBL) and the free troposphere (FT), results demonstrate that the PBL and FT contribute 61.86 % and 38.13 %, respectively, of the global tropospheric TAOD averaged over daytime and nighttime. Yet, this CALIOP-based partitioning of the different aerosol sub-types in the PBL and FT varies significantly. Among all 12 typical regions of interest analyzed, more than 50 % of TAOD is located in the lower troposphere (0–2 km), while the contribution is less than 2 % above 6 km. In global average terms, we found the aerosol FoO averaged over all layers is 4.45 %, with the largest contribution from ‘clean marine’ (1.79 %) and the smallest from ‘clean continental’ (0.05 %). Overall, the FoO vertical structures of the aerosol layer exhibit a distribution pattern similar to that of AEC. The resulting trend analyses show that CALIOP accurately captures significant regional anomalies in TAOD, as observed in other satellite measurements and aerosol reanalysis. Our correlation analysis between meteorological factors and TAOD suggests the interannual variability of TAOD is related to the variability of precipitation (PPT), volumetric soil moisture (VSM), and wind speed (WS) in the particular regions. For instance, the positive TAOD trend over the equatorial central Pacific is mainly attributable to the increased PPT and decreased WS. In contrast, in dry convective regions dominated by dust and smoke, the interannual variability/trend in TAOD is largely modified by the VSM driven by the PPT. Additionally, we further found these significant regional correlations are more robust within the PBL and significantly weakened or even reversed within the FT. This highlights the superiority of using the TAOD partitioned within the PBL as a proxy variable for the widely applied TAOD to explore the relationships between atmospheric pollution and meteorology.


2021 ◽  
Author(s):  
Christine Bingen ◽  
Charles Robert ◽  
Filip Vanhellemont ◽  
Nina Mateshvili

<p>Stratospheric aerosol extinction coefficient data derived from GOMOS using the AerGOM algorithm are one of the aerosol products provided to the Copernicus Climate Change Services (C3S).</p><p>The stellar occultation instrument GOMOS, which sounded the atmosphere in the UV-visible-near IR range on board ENVISAT during the period 2002-2012 was a pioneering instrument, relying on a large number of stars with varying magnitude and temperature making the data inversion challenging. An algorithm called AerGOM was developed as an alternative to the operational algorithm to optimize the retrieval of aerosol properties, and this dataset has been continuously improved since then.</p><p>A main milestone of this evolution was the elaboration of Level 3 gridded datasets in the framework of the ESA Aerosol_CCI project. This dataset provides aerosol radiative properties with as main quantity the aerosol extinction coefficient between 350 and 750 nm with a better resolution (bins with 5° latitude and 60° longitude intervals, 5-day time periods) than the usual monthly zonal mean. It is therefore better suited to describe the signature of events such as medium-size volcanic eruptions.</p><p>Afterward, an extended exploration of the AerGOM performance in the retrieval of trace gases such as ozone, nitrogen dioxide and nitrogen trioxide led to an adaptation of the retrieval scheme in order to improve the retrieved gaseous species.</p><p>The outcome of this exploration performed in the framework of the ESA Living Planet project EXPANSION is now exploited to improve again the Level 2 aerosol extinction coefficient, and the resultant Climate Data Record (CDR) delivered to C3S.</p><p>We present here the latest developments in the aerosol extinction coefficient retrieval from GOMOS using AerGOM, and show how we use the improvement of the inversion of gas species to derived the new version of the GOMOS extinction product in Level 2, and the C3S CDR. The validation of the AerGOM dataset with respect to datasets from several contemporary missions such as SAGE II, SAGE III, and OSIRIS is also presented.</p>


2021 ◽  
Vol 14 (2) ◽  
pp. 1015-1036
Author(s):  
Ghassan Taha ◽  
Robert Loughman ◽  
Tong Zhu ◽  
Larry Thomason ◽  
Jayanta Kar ◽  
...  

Abstract. The OMPS Limb Profiler (LP) instrument is designed to provide high-vertical-resolution ozone and aerosol profiles from measurements of the scattered solar radiation in the 290–1000 nm spectral range. It collected its first Earth limb measurement on 10 January 2012 and continues to provide daily global measurements of ozone and aerosol profiles from the cloud top up to 60 and 40 km, respectively. The relatively high vertical and spatial sampling allow detection and tracking of sporadic events when aerosol particles are injected into the stratosphere, such as volcanic eruptions or pyrocumulonimbus (PyroCb) events. In this paper we discuss the newly released Version 2.0 OMPS multi-wavelength aerosol extinction coefficient retrieval algorithm. The algorithm now produces aerosol extinction profiles at 510, 600, 674, 745, 869 and 997 nm wavelengths. The OMPS LP Version 2.0 data products are compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies. The comparison shows significant improvements in the OMPS LP retrieval performance in the Southern Hemisphere (SH) and at lower altitudes. These improvements arise from use of the longer wavelengths, in contrast with the V1.0 and V1.5 OMPS aerosol retrieval algorithms, which used radiances only at 675 nm and therefore had limited sensitivity in those regions. In particular, the extinction coefficients at 745, 869 and 997 nm are shown to be the most accurate, with relative accuracies and precisions close to 10 % and 15 %, respectively, while the 675 nm relative accuracy and precision are on the order of 20 %. The 510 nm extinction coefficient is shown to have limited accuracy in the SH and is only recommended for use between 20–24 km and only in the Northern Hemisphere. The V2.0 retrieval algorithm has been applied to the complete set of OMPS LP measurements, and the new dataset is publicly available.


Sign in / Sign up

Export Citation Format

Share Document