single batch
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 48)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fionán Davitt ◽  
Kamil Rahme ◽  
Sreyan Raha ◽  
Shane Garvey ◽  
Manuel Gutierrez ◽  
...  

Abstract Tin selenide (SnSe), a highly promising layered material, has been garnering particular interest in recent times due to its significant promise for future energy devices. Herein we report a simple solution phase approach for growing highly crystalline layered SnSe nanoribbons. Polyvinylpyrrolidone (PVP) was used as a templating agent to selectively passivates the (100) and (001) facets of the SnSe nanoribbons resulting in the unique growth of nanoribbons along their b-axis with a defined zigzag edge state along the sidewalls. The SnSe nanoribbons are few layers thick (~ 20 layers), with mean widths of ~40 nm, and achievable length of > 1 m. Nanoribbons could be produced in relatively high quantities (>150 mg) in a single batch experiment. The PVP coating also offer some resistance to oxidation, with removal of the PVP seen to lead to the formation a SnSe/SnOx core shell structure. The use of non-toxic PVP to replace toxic amines that are typically employed for other 1D forms of SnSe is a significant advantage for sustainable and environmentally friendly applications. Heat transport properties of the SnSe nanoribbons, derived from power dependent Raman spectroscopy, demonstrate the potential of SnSe nanoribbons as thermoelectric material.


Molbank ◽  
10.3390/m1288 ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. M1288
Author(s):  
Farzaneh Ziaee ◽  
Mohammad Ziaee

N-acetylcysteine (NAC) is mainly administrated as a mucolytic medication, antioxidant supplement, antidote in paracetamol overdose, and a drug for the prevention of diabetic kidney disease. Its effect has been investigated for the treatment of several diseases such as COVID-19. In this work, an effective method for high-yield synthesis of N-acetylcysteine is proposed. This drug can be synthesized in a single-batch step instead of using a multi-stage process. The proposed method has shown the potential to be considered as an alternative method for producing NAC. The purification process was carried out using suitable solvents to reach a high level of purity. The characterization of the synthesized drug was undertaken through Elemental analysis, Proton Nuclear Magnetic Resonance (1H NMR), High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and melting point analyses.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4620
Author(s):  
Christel Larbouret ◽  
Laurent Gros ◽  
André Pèlegrin ◽  
Thierry Chardès

Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.


2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Elise Burmeister Getz ◽  
Kevin J. Carroll ◽  
J. David Christopher ◽  
Beth Morgan ◽  
Scott Haughie ◽  
...  

AbstractBatch-to-batch pharmacokinetic (PK) variability of orally inhaled drug products has been documented and can render single-batch PK bioequivalence (BE) studies unreliable; results from one batch may not be consistent with a repeated study using a different batch, yet the goal of PK BE is to deliver a product comparison that is interpretable beyond the specific batches used in the study. We characterized four multiple-batch PK BE approaches to improve outcome reliability without increasing the number of clinical study participants. Three approaches include multiple batches directly in the PK BE study with batch identity either excluded from the statistical model (“Superbatch”) or included as a fixed or random effect (“Fixed Batch Effect,” “Random Batch Effect”). A fourth approach uses a bio-predictive in vitro test to screen candidate batches, bringing the median batch of each product into the PK BE study (“Targeted Batch”). Three of these approaches (Fixed Batch Effect, Superbatch, Targeted Batch) continue the single-batch PK BE convention in which uncertainty in the Test/Reference ratio estimate due to batch sampling is omitted from the Test/Reference confidence interval. All three of these approaches provided higher power to correctly identify true bioequivalence than the standard single-batch approach with no increase in clinical burden. False equivalence (type I) error was inflated above the expected 5% level, but multiple batches controlled type I error better than a single batch. The Random Batch Effect approach restored 5% type I error, but had low power for small (e.g., <8) batch sample sizes using standard [0.8000, 1.2500] bioequivalence limits.


2021 ◽  
pp. 37-53
Author(s):  
Adam Elgac ◽  
Agustín Rayo

Is there an English word that ends in ‘MT’? (If you are stumped, think about it for a moment and then read the last word of this abstract.) Before you figured out (or read) the answer to that question, did you possess the information that the word that is the answer is an English word that ends in ‘MT’? In a sense, yes: the word was in your vocabulary. But in another sense, no: perhaps you weren’t able to immediately answer the puzzle question. For finite agents, this phenomenon is unavoidable. We often possess a piece of information for some purposes (or with respect to some elicitation conditions) but not for other purposes (or conditions). This suggests that a mental state be represented not by a single batch of information, but rather by an ‘access table’—a function from purposes to batches of information. This representation makes clear what happens during certain ‘aha!’ moments in reasoning. It also allows us to model agents who exhibit imperfect recall, confusion, and mental fragmentation. And it sheds light on the difference between propositional knowledge and knowledge-how. The upshot is that representing mental states using access tables is more fruitful than one might have dreamt.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gregory M. Weber ◽  
Jill Birkett ◽  
Kyle Martin ◽  
Doug Dixon ◽  
Guangtu Gao ◽  
...  

Abstract Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes.


2021 ◽  
pp. 105394
Author(s):  
Renan Spencer Trindade ◽  
Olinto César Bassi de Araújo ◽  
Marcia Fampa

Sign in / Sign up

Export Citation Format

Share Document