aquifer remediation
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Georg J. Houben ◽  
Sarah Collins ◽  
Mark Bakker ◽  
Thomas Daffner ◽  
Falk Triller ◽  
...  

AbstractHorizontal wells play an often overlooked role in hydrogeology and aquifer remediation but can be an interesting option for many applications. This study reviews the constructional and hydraulic aspects that distinguish them from vertical wells. Flow patterns towards them are much more complicated than those for vertical wells, which makes their mathematical treatment more demanding. However, at some distance, the drawdown fields of both well types become practically identical, allowing simplified models to be used. Due to lower drawdowns, the yield of a horizontal well is usually higher than that of a vertical well, especially in thin aquifers of lower permeability, where they can replace several of the latter. The lower drawdown, which results in lower energy demand and slower ageing, and the centralized construction of horizontal wells can lead to lower operational costs, which can make them an economically feasible option.


Chemosphere ◽  
2021 ◽  
pp. 133177
Author(s):  
Mehdi Ramezanzadeh ◽  
Morteza Aminnaji ◽  
Fereidoun Rezanezhad ◽  
Mohammad Hossein Ghazanfari ◽  
Masoud Babaei

2021 ◽  
pp. 126339
Author(s):  
Jiaxin Shi ◽  
Zongyan Li ◽  
Baogang Zhang ◽  
Lei Li ◽  
Weimin Sun
Keyword(s):  

2021 ◽  
Vol 36 (5) ◽  
pp. 57-66
Author(s):  
Mojtaba Dehqani Tafti ◽  
Faramarz Doulati Ardejani ◽  
Mohammad Fatehi Marji ◽  
Yousef Shiri

Fluid flow in a dual permeable medium (DPM) is essential in solute transport in mining and aquifer studies. In this paper, water flushing into a contaminated DPM containing fine-grained lenses with different geometries was investigated with the Lattice Boltzmann Method (LBM). The LBM model used in this study was D2Q9 with a relaxation time of 1, a cohesion value of 3 for a fluid density of 1 (mu.Lu-3). The saturated fluid in the DPM was a contaminant that usually stays in low permeable lenses and after flushing, it is leaked into the porous medium by a second fluid (water). This phenomenon is predominant when the displacing fluid has a lower concentration than the contaminated fluid. Diffusion and advection are the main mechanisms that control fluid flow in the porous medium. The results of the simulations showed: (1) advection controlled solute transport through the flushing phase, and back-diffusion occurred after the change in phase; (2) the lenses’ geometry influenced the fluid flow pattern and the remediation process. As a result, aquifer remediation strategies based on the lenses’ geometry and their permeability can help us select the appropriate environmental protection.


Sign in / Sign up

Export Citation Format

Share Document