phase space function
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Hiroyuki Umeeda

Abstract We study local quark-hadron duality and its violation for the $$ {D}^0-{\overline{D}}^0 $$ D 0 − D ¯ 0 , $$ {B}_d^0-{\overline{B}}_d^0 $$ B d 0 − B ¯ d 0 and $$ {B}_s^0-{\overline{B}}_s^0 $$ B s 0 − B ¯ s 0 mixings in the ’t Hooft model, offering a laboratory to test QCD in two-dimensional spacetime together with the large-Nc limit. With the ’t Hooft equation being numerically solved, the width difference is calculated as an exclusive sum over two-body decays. The obtained rate is compared to inclusive one that arises from four-quark operators to check the validity of the heavy quark expansion (HQE). In view of the observation in four-dimensions that the HQE prediction for the width difference in the $$ {D}^0-{\overline{D}}^0 $$ D 0 − D ¯ 0 mixing is four orders of magnitude smaller than the experimental data, in this work we investigate duality violation in the presence of the GIM mechanism. We show that the order of magnitude of the observable in the $$ {D}^0-{\overline{D}}^0 $$ D 0 − D ¯ 0 mixing is enhanced in the exclusive analysis relative to the inclusive counterpart, when the 4D-like phase space function is used for the inclusive analysis. By contrast, it is shown that for the $$ {B}_d^0-{\overline{B}}_d^0 $$ B d 0 − B ¯ d 0 and $$ {B}_s^0-{\overline{B}}_s^0 $$ B s 0 − B ¯ s 0 mixings, small yet non-negligible corrections to the inclusive result emerge, which are still consistent with what is currently indicated in four-dimensions.


2005 ◽  
Vol 20 (17n18) ◽  
pp. 1371-1385 ◽  
Author(s):  
N. COSTA DIAS ◽  
J. N. PRATA

We review the Weyl-Wigner formulation of quantum mechanics in phase space. We discuss the concept of Narcowich-Wigner spectrum and use it to state necessary and sufficient conditions for a phase space function to be a Wigner distribution. Based on this formalism we analize the modifications introduced by the presence of boundaries. Finally, we discuss the concept of environment-induced decoherence in the context of the Weyl-Wigner approach.


2003 ◽  
Vol 119 (2) ◽  
pp. 680-695 ◽  
Author(s):  
Debashis Barik ◽  
Suman Kumar Banik ◽  
Deb Shankar Ray

1983 ◽  
Vol 63 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Michael Springborg

1982 ◽  
Vol 47 (5) ◽  
pp. 1001-1019 ◽  
Author(s):  
Jens Peder Dahl ◽  
Michael Springborg

Sign in / Sign up

Export Citation Format

Share Document