dynamic resource
Recently Published Documents


TOTAL DOCUMENTS

1670
(FIVE YEARS 364)

H-INDEX

46
(FIVE YEARS 10)

Dynamic resource allocation of cloud data centers is implemented with the use of virtual machine migration. Selected virtual machines (VM) should be migrated on appropriate destination servers. This is a critical step and should be performed according to several criteria. It is proposed to use the criteria of minimum resource wastage and service level agreement violation. The optimization problem of the VM placement according to two criteria is formulated, which is equivalent to the well-known main assignment problem in terms of the structure, necessary conditions, and the nature of variables. It is suggested to use the Hungarian method or to reduce the problem to a closed transport problem. This allows the exact solution to be obtained in real time. Simulation has shown that the proposed approach outperforms widely used bin-packing heuristics in both criteria.


2022 ◽  
Vol 70 (2) ◽  
pp. 4147-4167
Author(s):  
Aref Hassan Kurd Ali ◽  
Halikul Lenando ◽  
Slim Chaoui ◽  
Mohamad Alrfaay ◽  
Medhat A. Tawfeek

2022 ◽  
pp. 108710
Author(s):  
Jie Lin ◽  
Lin Huang ◽  
Hanlin Zhang ◽  
Xinyu Yang ◽  
Peng Zhao

2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Misfa Susanto ◽  
Sitronella Nurfitriani Hasim ◽  
Helmy Fitriawan

Ultra-Dense Network (UDN) which is formed from femtocells densely deployed is known as one of key technologies for 5th generation (5G) cellular networks. UDN promises for increased capacity and quality of cellular networks. However, UDN faces more complex interference problems than rarely deployed femtocells, worse on femtocells that are located on cell edge area of macrocell. Therefore, mitigating or reducing effects of interferences is an important issue in UDN. This paper focuses on interference management using dynamic resource allocation for UDN. Types of interference considered in this study are cross-tier (macrocell-to-femtocell) and co-tier (femtocellto-femtocell) interferences for uplink transmission. We consider several scenarios to examine the dynamic resource allocation method for UDN in case of femtocells deployed in the whole area of microcell and in the cell edge area of macrocell. Simulation experiment using MATLAB program has been carried out. The performance parameters that are collected from the simulation are Signal to Interference and Noise Ratio (SINR), throughput, and Bit Error Rate (BER). The obtained simulation results show that system using dynamic resource allocation method outperforms conventional system and the results were consistent for the collected performance parameters. The dynamic resource allocation promises to reduce the effects of interference in UDN.


2021 ◽  
Vol 12 (1) ◽  
pp. 140
Author(s):  
Seunghwan Lee ◽  
Linh-An Phan ◽  
Dae-Heon Park ◽  
Sehan Kim ◽  
Taehong Kim

With the exponential growth of the Internet of Things (IoT), edge computing is in the limelight for its ability to quickly and efficiently process numerous data generated by IoT devices. EdgeX Foundry is a representative open-source-based IoT gateway platform, providing various IoT protocol services and interoperability between them. However, due to the absence of container orchestration technology, such as automated deployment and dynamic resource management for application services, EdgeX Foundry has fundamental limitations of a potential edge computing platform. In this paper, we propose EdgeX over Kubernetes, which enables remote service deployment and autoscaling to application services by running EdgeX Foundry over Kubernetes, which is a product-grade container orchestration tool. Experimental evaluation results prove that the proposed platform increases manageability through the remote deployment of application services and improves the throughput of the system and service quality with real-time monitoring and autoscaling.


Sign in / Sign up

Export Citation Format

Share Document