repressor activity
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 17)

H-INDEX

42
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valentina Fajner ◽  
Fabio Giavazzi ◽  
Simona Sala ◽  
Amanda Oldani ◽  
Emanuele Martini ◽  
...  

AbstractSpecialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons.


Author(s):  
Martina Tufano ◽  
Elena Cesaro ◽  
Rosanna Martinelli ◽  
Roberto Pacelli ◽  
Simona Romano ◽  
...  

Melanoma is one of the most immunogenic tumors and has the highest potential to elicit specific adaptive antitumor immune responses. Immune cells induce apoptosis of cancer cells either by soluble factors or by triggering cell-death pathways. Melanoma cells exploit multiple mechanisms to escape immune system tumoricidal control. FKBP51 is a relevant pro-oncogenic factor of melanoma cells supporting NF-κB-mediated resistance and cancer stemness/invasion epigenetic programs. Herein, we show that FKBP51-silencing increases TNF-related apoptosis-inducing ligand (TRAIL)-R2 (DR5) expression and sensitizes melanoma cells to TRAIL-induced apoptosis. Consistent with the general increase in histone deacetylases, as by the proteomic profile, the immune precipitation assay showed decreased acetyl-Yin Yang 1 (YY1) after FKBP51 depletion, suggesting an impaired repressor activity of this transcription factor. ChIP assay supported this hypothesis. Compared with non-silenced cells, a reduced acetyl-YY1 was found on the DR5 promoter, resulting in increased DR5 transcript levels. Using Crispr/Cas9 knockout (KO) melanoma cells, we confirmed the negative regulation of DR5 by FKBP51. We also show that KO cells displayed reduced levels of acetyl-EP300 responsible for YY1 acetylation, along with reduced acetyl-YY1. Reconstituting FKBP51 levels contrasted the effects of KO on DR5, acetyl-YY1, and acetyl-EP300 levels. In conclusion, our finding shows that FKBP51 reduces DR5 expression at the transcriptional level by promoting YY1 repressor activity. Our study supports the conclusion that targeting FKBP51 increases the expression level of DR5 and sensitivity to TRAIL-induced cell death, which can improve the tumoricidal action of immune cells.


Author(s):  
Asanga Deshappriya Nagalla ◽  
Noriko Nishide ◽  
Ken-ichiro Hibara ◽  
Takeshi Izawa

Abstract The anticipation of changing seasons is crucial for reproduction in plants. Despite the broad cultivation area, the effects of ambient temperature on its photoperiodic flowering are largely unknown in rice. Here, we first examined flowering time under four distinct conditions: short-day or long-day and high or low temperature, using cultivars, nearly isogenic lines, and mutants in rice. We also examined gene expression patterns of key flowering-time genes using the same lines under various conditions including temporal dynamics after light pulses. In addition to delayed flowering because of low growth rates, we found that photoperiodic flowering is clearly enhanced by both Hd1 and Ghd7 genes under low-temperature conditions in rice. We also revealed that PhyB can control Ghd7 repressor activity as a temperature sensor to inhibit Ehd1, Hd3a, and RFT1 at lower temperatures, likely through a post-transcriptional regulation, despite inductive photoperiod conditions. Furthermore, we found that rapid reduction of Ghd7 mRNA under high-temperature conditions can lead to mRNA increase in a rice florigen gene, RFT1. Thus, multiple temperature sensing mechanisms would affect photoperiodic flowering in rice. The rising of ambient temperatures in early summer would contribute to inhibition of Ghd7 repressor activity, resulting in the appropriate floral induction of rice in temperate climates.


2021 ◽  
Author(s):  
Joseph Fakhoury ◽  
Yifan Zhang ◽  
Katherine A Edmonds ◽  
Mauro Bringas ◽  
Justin Luebke ◽  
...  

CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily that regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens. A cysteine thiol pair on CstR reacts with RSS to form a mixture of interprotomer di-, tri- and tetrasulfide crosslinks, which drives transcriptional derepression of CstR-regulated genes. In some bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), CstR and CsoR, a Cu(I)-sensor, exhibit no regulatory crosstalk in cells, despite maintaining an identical pair of cysteines. We report a sequence similarity network (SSN) analysis of the entire CsoR superfamily, together with the first crystallographic structure of a CstR protein and mass spectrometry-based kinetic profiling experiments to obtain new insights into the molecular basis of RSS specificity in CstRs. The more N-terminal cysteine is the attacking Cys in CstR and is far more nucleophilic than in a CsoR. This cysteine, C30 in SpCstR, is separated from the resolving thiol, C59′, by an Asn55′ wedge. Chemical reactivity experiments reveal a striking asymmetry of reactivity, preserved in all CstRs and with all oxidants tested; however, the distribution of crosslinked products varies markedly among CstRs. Substitution of N55 with Ala in SpCstR significantly impacts the distribution of species, despite adopting the same structure as the parent repressor. We show that CstRs react with hydrogen peroxide, a finding that contrasts sharply with other structurally distinct persulfide sensors from Gram-negative bacteria. This suggests that other factors may enhance the specificity and repressor activity of CstRs in cells.


2021 ◽  
Author(s):  
Giuseppe Faudone ◽  
Whitney Kilu ◽  
Xiaomin Ni ◽  
Apirat Chaikuad ◽  
Sridhar Sreeramulu ◽  
...  

The orphan nuclear receptor TLX is expressed almost exclusively in neural stem cells. TLX acts as an essential factor for neural stem cell survival and is hence considered as a promising drug target in neurodegeneration. However, few studies have characterized the roles of TLX due to a lack of ligands and limited functional understanding. Here, we identify caffeine and istradefylline as TLX ligands that counteract the receptor’s intrinsic repressor activity in reporter gene assays and modulate TLX regulated SIRT1 and p21 expression. Mutagenesis of residues lining a cavity within the TLX ligand binding domain altered activity of these ligands suggesting direct interactions with helix 5. Using istradefylline as a tool compound, we observed ligand-sensitive recruitment of the co-repressor SMRT and heterodimerization of TLX with RXR. Both protein-protein complexes evolve as factors that modulate TLX function and suggest an unprecedented role of TLX in directly repressing other nuclear receptors.


2021 ◽  
Vol 118 (11) ◽  
pp. e2016673118
Author(s):  
Lulu Li ◽  
Hehong Zhang ◽  
Changhai Chen ◽  
Haijian Huang ◽  
Xiaoxiang Tan ◽  
...  

Plant viruses employ diverse virulence strategies to achieve successful infection, but there are few known general strategies of viral pathogenicity and transmission used by widely different plant viruses. Here, we report a class of independently evolved virulence factors in different plant RNA viruses which possess active transcriptional repressor activity. Rice viruses in the genera Fijivirus, Tenuivirus, and Cytorhabdovirus all have transcriptional repressors that interact in plants with the key components of jasmonic acid (JA) signaling, namely mediator subunit OsMED25, OsJAZ proteins, and OsMYC transcription factors. These transcriptional repressors can directly disassociate the OsMED25-OsMYC complex, inhibit the transcriptional activation of OsMYC, and then combine with OsJAZ proteins to cooperatively attenuate the JA pathway in a way that benefits viral infection. At the same time, these transcriptional repressors efficiently enhanced feeding by the virus insect vectors by repressing JA signaling. Our findings reveal a common strategy in unrelated plant viruses in which viral transcriptional repressors hijack and repress the JA pathway in favor of both viral pathogenicity and vector transmission.


2021 ◽  
Vol 22 (3) ◽  
pp. 1475
Author(s):  
Karolina Jaworska ◽  
Marta Ludwiczak ◽  
Emilia Murawska ◽  
Adrianna Raczkowska ◽  
Katarzyna Brzostek

In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.


2021 ◽  
Vol 11 ◽  
Author(s):  
Krishna Kumar Singh ◽  
P. J. Athira ◽  
Neerupma Bhardwaj ◽  
Devendra Pratap Singh ◽  
Uchenna Watson ◽  
...  

MtrA is an essential response regulator (RR) protein in M. tuberculosis, and its activity is modulated after phosphorylation from its sensor kinase MtrB. Interestingly, many regulatory effects of MtrA have been reported to be independent of its phosphorylation, thereby suggesting alternate mechanisms of regulation of the MtrAB two-component system in M. tuberculosis. Here, we show that RR MtrA undergoes non-enzymatic acetylation through acetyl phosphate, modulating its activities independent of its phosphorylation status. Acetylated MtrA shows increased phosphorylation and enhanced interaction with SK MtrB assessed by phosphotransfer assays and FRET analysis. We also observed that acetylated MtrA loses its DNA-binding ability on gene targets that are otherwise enhanced by phosphorylation. More interestingly, acetylation is the dominant post-translational modification, overriding the effect of phosphorylation. Evaluation of the impact of MtrA and its lysine mutant overexpression on the growth of H37Ra bacteria under different conditions along with the infection studies on alveolar epithelial cells further strengthens the importance of acetylated MtrA protein in regulating the growth of M. tuberculosis. Overall, we show that both acetylation and phosphorylation regulate the activities of RR MtrA on different target genomic regions. We propose here that, although phosphorylation-dependent binding of MtrA drives its repressor activity on oriC and rpf, acetylation of MtrA turns this off and facilitates division in mycobacteria. Our findings, thus, reveal a more complex regulatory role of RR proteins in which multiple post-translational modifications regulate the activities at the levels of interaction with SK and the target gene expression.


2020 ◽  
pp. dmm.046573
Author(s):  
Talia Nasr ◽  
Andrea M. Holderbaum ◽  
Praneet Chaturvedi ◽  
Kunal Agarwal ◽  
Jessica L. Kinney ◽  
...  

Congenital tracheomalacia, resulting from incomplete tracheal cartilage development, is a relatively common birth defect that severely impairs breathing in neonates. Mutations in the Hedgehog (HH) pathway and downstream Gli transcription factors are associated with tracheomalacia in patients and mouse models; however, the underlying molecular mechanisms are unclear. Using multiple HH/Gli mouse mutants including one that mimics Pallister-Hall Syndrome, we show that excessive Gli repressor activity prevents specification of tracheal chondrocytes. Lineage tracing experiments show that Sox9+ chondrocytes arise from HH-responsive splanchnic mesoderm in the fetal foregut that expresses the transcription factor Foxf1. Disrupted HH/Gli signaling results in 1) loss of Foxf1 which in turn is required to support Sox9+ chondrocyte progenitors and 2) a dramatic reduction in Rspo2, a secreted ligand that potentiates Wnt signaling known to be required for chondrogenesis. These results reveal a HH-Foxf1-Rspo2 signaling axis that governs tracheal cartilage development and informs the etiology of tracheomalacia.


Sign in / Sign up

Export Citation Format

Share Document