ratio transmission
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Sarmad K. Ibrahim ◽  
Saif A. Abdulhussien

<span>The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.</span>


2022 ◽  
Author(s):  
Thi Hong Hiep Le ◽  
Thanh Son Pham ◽  
Bui Xuan Khuyen ◽  
Bui Son Tung ◽  
Quang Minh Ngo ◽  
...  

Abstract In this work, we investigate the propagation of magneto-inductive waves (MIWs) in ordering magnetic metamaterial (MM) structures. The proposed non-homogeneous MM slab consists of 9 × 9 MM unit cells constructed from a five-turn spiral embedded on an FR-4 substrate. External capacitors with the value of 40 pF or 50 pF were added to control the resonant frequency of each unit cell in accordance with the waveguide configurations. The characteristics of metamaterial structures, such as negative permeability, current ratio, transmission response, and field distribution in the waveguide, have been thoroughly analyzed by simulation and experiment. Because of the strong magnetic field confinement in the waveguide, the transmittance after nine elements of the non-homogeneous MM slab is 5.2 times greater than that of the homogeneous MM slab. This structure can be applied to the planar near-field wireless power transfer, position sensor, and low-frequency communication.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8064
Author(s):  
Binod Kharel ◽  
Onel Luis Alcaraz López ◽  
Hirley Alves ◽  
Matti Latva-aho

This paper focuses on edge-enabled cloud radio access network architecture to achieve ultra-reliable communication, a crucial enabler for supporting mission-critical machine-type communication networks. We propose coordinated multi-point transmission schemes taking advantage of diversity mechanisms in interference-limited downlink cellular networks. The network scenario comprises spatially distributed multiple remote radio heads (RRHs) that may cooperate through silencing, or by using more elaborated diversity strategies such as maximum ratio transmission or transmit antenna selection to serve user equipment in the ultra-reliable operation regime. We derive an exact closed-form expression for the outage probabilities and expected values of signal-to-interference ratio for silencing, transmit antenna selection and maximum ratio transmission schemes. We formulate rate control and energy efficiency under reliability constraints to test the performance and resource usage of the proposed schemes. Furthermore, we study the impact on average system sum throughput with throughput-reliability trade-off under cooperative communication. Extensive numerical analysis shows the feasibility of ultra-reliable communication by implementing diversity schemes with RRHs cooperation.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012006
Author(s):  
Sammaiah Thurpati ◽  
Mahesh Mudavath ◽  
P. Muthuchidambaranathan

Abstract The performance of linear precoding schemes in downlink Massive MIMO systems is dealt with in this paper. Linear precoding schemes are incorporated with zero-forcing (ZF) and maximum ratio transmission (MRT), truncated polynomial expansion (TPE), regularized zero force (RZF) in Downlink massive MIMO systems. Massive MIMO downlink output is evaluated with linear precoding included. This paper expresses the performance of achievable sum-rate linear precoding with variable signal-to-noise (SNR) ratio and achievable sum rate and several transmitter-receiver antennas, such as imperfect CSI, less complex processing, and inter-user interference. The transmitter has complete state information on the channel. The information narrates how a signal propagates to the receiver from the transmitter and reflects, for example, the cumulative effect of distance scattering, fading, and power decay. They show that the performance analysis of two linear precoding techniques, i.e., Maximum Ratio Transmission (MRT) and Zero Forcing (ZF) for downlink mMIMO output network over a perfect chain. The results show the improved ZF precoding achievable sum rate compared to the MRT precoding schemes and compared the average achievable rate RZF and TPE.


2021 ◽  
Author(s):  
SAMMAIAH THURPATI ◽  
P Muthuchidambaranathan

Abstract The performance of linear precoding schemes in downlink Massive MIMO systems is dealt with in this paper. Linear precoding schemes are incorporated with zero forcing (ZF) and maximum ratio transmission (MRT), truncated polynomial expansion (TPE), regularized zero force (RZF) in Downlink massive MIMO systems. Massive MIMO downlink output is evaluated with linear precoding included. This paper expresses the performance of achievable sum rate linear precoding with variable signal-to-noise (SNR) ratio and achievable sum rate and several transmitter-receiver antennas, such as imperfect CSI, less complex processing and inter-user interference. The transmitter has complete state information on the channel. The information narrate how a signal propagates to the receiver from the transmitter and reflects, for example, the cumulative effect of distance scattering, fading, and power decay. They show that the performance analysis of two linear precoding techniques,i.e.Maximum Ratio Transmission (MRT) and Zero Forcing (ZF) for downlink mMIMO output network over a perfect chain. The results show the improved ZF precoding achievable sum rate compared to the MRT precoding schemes and also compared the average achievable rate RZF and TPE.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6222
Author(s):  
Jiamin Li ◽  
Lingling Chen ◽  
Pengcheng Zhu ◽  
Dongming Wang ◽  
Xiaohu You

In this paper, we use satellite-assisted and multi-group multicast mechanisms to relieve ground traffic pressure and improve data transmission efficiency of cell-free massive MIMO systems. We propose to estimate channel state information (CSI) by common pilot scheme. Given the estimated CSI, we derive the closed-form expressions of achievable rate with maximum ratio transmission (MRT) and zero-forcing (ZF) precoding. The correctness of the closed-form expressions is verified through simulations. The results show that with the help of satellite and multicast, the average system spectrum efficiency (SE) can be significantly improved.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1579
Author(s):  
Yingjie Duan ◽  
Hong Ni ◽  
Xiaoyong Zhu

Reliable multicast distribution is essential for some applications such as Internet of Things (IoT) alarm information and important file distribution. Traditional IP reliable multicast usually relies on multicast source retransmission for recovery losses, causing huge recovery delay and redundancy. Moreover, feedback implosion tends to occur towards multicast source as the number of receivers grows. Information-Centric Networking (ICN) is an emerging network architecture that is efficient in content distribution by supporting multicast and in-network caching. Although ubiquitous in-network caching provides nearby retransmission, the design of cache strategy greatly affects the performance of loss recovery. Therefore, how to recover losses efficiently and quickly is an urgent problem to be solved in ICN reliable multicast. In this paper, we first propose an overview architecture of ICN-based reliable multicast and formulate a problem using recovery delay as the optimization target. Based on the architecture, we present a Congestion-Aware Probabilistic Cache (CAPC) strategy to reduce recovery delay by caching recently transmitted chunks during multicast transmission. Then, we propose NACK feedback aggregation and recovery isolation scheme to decrease recovery overhead. Finally, experimental results show that our proposal can achieve fully reliable multicast and outperforms other approaches in recovery delay, cache hit ratio, transmission completion time, and overhead.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shen Yi ◽  
Pan Zhiwen ◽  
Liu Nan ◽  
You Xiaohu

We propose a legal full-duplex unmanned aerial vehicle (UAV) surveillance system in the presence of the ground-to-ground suspicious link with antisurveillance technology. UAV performs passive surveillance and active jamming simultaneously, and the suspicious source with multiantenna employs artificial noise to avoid being monitored. In order to ensure effective surveilling, we adopt two beamforming schemes, namely, maximum ratio transmission (MRT)/receiving zero-forcing (RZF) and transmitting zero-forcing (TZF)/maximum ratio combing (MRC), for MIMO UAV. For the two beamforming schemes, we derive the surveilling nonoutage probability in a closed-form expression and analyze the surveilling performance under different system environments. Monte Carlo (MC) simulation validates the correctness of the formula.


Sign in / Sign up

Export Citation Format

Share Document