lipid metabolites
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 111)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 748
Author(s):  
Damian Jozef Flis ◽  
Emilia Gabriela Bialobrodzka ◽  
Ewa Aleksandra Rodziewicz-Flis ◽  
Zbigniew Jost ◽  
Andzelika Borkowska ◽  
...  

This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats’ blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient’s health due to the common use of glucocorticoids like Dex.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Yu ◽  
Wentao Lyu ◽  
Zixian Fu ◽  
Qian Fan ◽  
Yingping Xiao ◽  
...  

Fatty liver production results from the process of overfeeding geese, inducing a dramatic increase in de novo liver lipogenesis. To investigate the alteration of liver metabolites by overfeeding, especially lipid metabolites, and the potential pathways causing these changes, 60 Landes geese at 65 days old were raised in three groups with 20 geese per group, namely, the D0 group (free from gavage), D7 group (overfeeding for 7 days), and D25 group (overfeeding for 25 days). At 90 days old, segments of liver tissue were collected from 10 geese of each group for gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) analysis. A large number of endogenous molecules in the livers of geese were altered dramatically by overfeeding. In the livers of overfed geese, the level of oleic acid was observed to continuously increase, while the levels of phenylalanine, methyl phosphate, sulfuric acid, and 3-hydroxybenzaldehyde were decreased. The most significantly different metabolites were enriched in amino acid, lipid, and nucleotide metabolism pathways. The present study further supports the idea that Landes geese efficiently produce fatty liver, and potential biomarkers and disturbed metabolic pathways during the process of forming fatty liver were identified. In conclusion, this study might provide some insights into the underlying mechanisms of fatty liver formation.


2022 ◽  
Vol 226 (1) ◽  
pp. S7
Author(s):  
Kristin D. Gerson ◽  
Heather H. Burris ◽  
Lauren Anton ◽  
Maayan Levy ◽  
Jacques Ravel ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Miloš Ž. Petrović ◽  
Marko Cincović ◽  
Jože Starič ◽  
Radojica Djoković ◽  
Branislava Belić ◽  
...  

Metabolic stress in early lactation cows is characterized by lipolysis, ketogenesis, insulin resistance and inflammation because of negative energy balance and increased use of lipids for energy needs. In this study the relationship between lipid metabolite, lipid-based insulin resistance, and hepatocyte functionality indexes and tumor necrosis factor alpha (TNF-α) with extracellular heat shock protein 70 (eHsp70) was investigated. The experiment included 50 cows and all parameters were measured in blood serum. In cows with a more pronounced negative energy balance, the following was determined: a higher concentration of eHsp70, TNF-α, non-esterified fatty acid (NEFA), beta-hydroxybutyrate (BHB), NEFA to insulin and NEFA to cholesterol ratio and lower concentration of cholesterol, very low-density lipoproteins (VLDL), low density lipoproteins (LDL) and liver functionality index (LFI). The eHsp70 correlated negatively with the values of cholesterol, VLDL, LDL, and triglycerides, while correlated positively with the level of NEFA and BHB. A higher concentration of eHsp70 suggests the development of fatty liver (due to a higher NEFA to cholesterol ratio and lower LFI) and insulin resistance (due to a lower revised quantitative insulin sensitivity check index RQUICKI-BHB and higher NEFA to insulin ratio). The eHsp70 correlated positively with TNF-α. Both TNF-α and eHsp70 correlated similarly to lipid metabolites. In cows with high eHsp70 and TNF-α values we found higher concentrations of NEFA, BHB, NEFA to insulin and NEFA to cholesterol ratio and a lower concentration of triglycerides and VLDL cholesterol compared to cows that had only high TNF-α values. Based on the positive correlation between eHsp70 and TNF-α, their similar relations, and the additional effect of eHsp70 (high TNF-α + eHsp70 values) on lipid metabolites we conclude that eHsp70 has pro-inflammatory effects implicating lipolysis, fatty liver, and fat tissue insulin resistance.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2454
Author(s):  
Zhanyu Chen ◽  
Yushuang Wang ◽  
Yanbo Chen ◽  
Xiaoqin Yang ◽  
Shuang Wang ◽  
...  

Phospholipid N-methyltransferase (PLMT) plays an important role in the synthesis of phosphatidylcholine (PtdCho). The aim of this study was to characterize the molecular properties of GmPLMT and the expression of soybean GmPLMT and its effects on the production of lipid metabolites. Results showed that GmPLMT composed of mainly α-helix was a hydrophobic and transmembrane protein. In soybean leaves, GmPLMT was highly expressed during seedling and flowering stages. In transgenic Arabidopsis thaliana, the highest and lowest expression levels of GmPLMT were detected at flowering and maturity stages, respectively. The total phospholipid contents in soybean grains were decreased from 7.2% (35 days after flowering) to 4.8% (55 days after flowering) and then increased to 7.0% (75 days after flowering). The contents of PtdCho showed a similar pattern to that of total phospholipids. In transgenic A. thaliana seeds, the contents of total phospholipids and PtdCho were significantly increased. Significantly positive correlations were revealed between expression of GmPLMT and contents of both PtdCho and crude fats, and between the contents of PtdCho and both linoleic acid and linolenic acid, suggesting that increased expression of GmPLMT improved the production of lipid metabolites. This study provided solid experimental evidence for further improvement of soybean quality based on GmPLMT in the molecular breeding of soybeans.


2021 ◽  
Vol 19 ◽  
Author(s):  
Esther Casas-Fernández ◽  
Carmen Peña-Bautista ◽  
Miguel Baquero ◽  
Consuelo Cháfer-Pericás

: Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by the analysis of cerebrospinal fluid samples or by brain positron emission tomography. These procedures have some disadvantages to become widely used (expensive, invasive). As alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier, could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since brain has a high lipid content and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) showed impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.


2021 ◽  
Vol 10 (6) ◽  
pp. 1
Author(s):  
Ngozi L. Edoh ◽  
Ukpabi J. Ukpabi ◽  
John O. Igoli

Cassava roots undergo postharvest physiological deterioration (PPD), and for most varieties it sets in within 72 hours of harvest. An untargeted metabolomics approach combined with a data-driven approach for statistical analysis was used to characterize and profile high beta-carotene cassava varieties with the aim of identifying any relevant metabolite changes that occur during PPD. Sixteen cassava root samples from four cassava lines were planted in a greenhouse and harvested after four months. The samples included four of 2 conventionally bred beta carotene cassava varieties – UMUCASS 38, UMUCASS 45 and four of 2 transgenic high beta carotene cultivars - EC20-7 and EC20-8 cassava lines. Extracts of fresh cassava roots from 20-100 mg tissues were used for the analyses and data were processed using Elements for Metabolomics software. Starch and lipid metabolites were the major constituents which may help explain the observed differences in starch and dry matter content among the varieties. The results provide further insight in the understanding of PPD and suggestions on controlling this deterioration in cassava are made.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Jin ◽  
Zhe Liang ◽  
Hua Lu ◽  
Jinmei Pan ◽  
Peiyuan Li ◽  
...  

Ocean acidification is recognized as a major anthropogenic perturbation of the modern ocean. While extensive studies have been carried out to explore the short-term physiological responses of phytoplankton to ocean acidification, little is known about their lipidomic responses after a long-term ocean acidification adaptation. Here we perform the lipidomic analysis of a marine diatom Phaeodactylum tricornutum following long-term (∼400 days) selection to ocean acidification conditions. We identified a total of 476 lipid metabolites in long-term high CO2 (i.e., ocean acidification condition) and low CO2 (i.e., ambient condition) selected P. tricornutum cells. Our results further show that long-term high CO2 selection triggered substantial changes in lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-term high CO2 selected conditions, the majority (∼80%) of phosphatidylglycerol (PG) was up-regulated. The tightly coupled regulations (positively or negatively correlated) of significantly regulated lipid metabolites suggest that the lipid remodeling is an organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since the composition and content of lipids are crucial for marine food quality, and these changes can be transferred to high trophic levels, our results highlight the importance of determining the long-term adaptation of lipids in marine producers in predicting the ecological consequences of climate change.


2021 ◽  
Vol 22 (19) ◽  
pp. 10714
Author(s):  
Xin-Xin Guan ◽  
Dong-Ning Rao ◽  
Yan-Zhe Liu ◽  
Yong Zhou ◽  
Hui-Hui Yang

Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.


Sign in / Sign up

Export Citation Format

Share Document