biosynthetic machinery
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 59)

H-INDEX

30
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Fu Kuroiwa ◽  
Akira Nishino ◽  
Yasuko Mandal ◽  
Masataka Honzawa ◽  
Miki Suenaga-Hiromori ◽  
...  

Abstract Natural rubber of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity. The proteins HRT1, HRT2, and HRBP have been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes. Co-expression of HRT1 and HRBP in the presence of nanodiscs yielded marked polyisoprene synthesis activity. By contrast, neither HRT1, HRT2, or HRBP alone nor a complex of HRT2 and HRBP manifested such activity. Similar analysis of guayule (Parthenium argentatum) proteins revealed that three HRT1 homologs (PaCPT1–3) manifested prenyltransferase activity only if co-expressed with PaCBP, the homolog of HRBP. Our results thus indicate that two heterologous subunits form the core prenyltransferase of the rubber biosynthetic machinery. A recently developed structure modeling program predicted the structure of such heterodimer complexes including HRT1/HRBP and PaCPT2/PaCBP. HRT and PaCPT proteins were also found to possess affinity for a lipid membrane in the absence of HRBP or PaCBP, and structure modeling implicated an amphipathic α-helical domain of HRT1 and PaCPT2 in membrane binding of these proteins.


2021 ◽  
Author(s):  
Kenna Stenback ◽  
Kayla Flyckt ◽  
Trang Hoang ◽  
Alexis Campbell ◽  
Basil Nikolau

Abstract Eukaryotes express a multi-component fatty acid elongase to produce very long chain fatty acids (VLCFAs), which are building blocks of diverse lipids. Elongation is achieved by cyclical iteration of four reactions, the first of which generates a new carbon-carbon bond, elongating the acyl-chain. This reaction is catalyzed by either ELONGATION DEFECTIVE LIKE (ELO) or 3-ketoacyl-CoA synthase (KCS) enzymes. Whereas plants express both ELO and KCS enzymes, other eukaryotes express only ELOs. We explored the KCS and ELO enzymatic redundancies by expressing the former in yeast strains that lacked endogenous ELO isozymes. Expression of the 26 maize KCS isozymes in wild-type, scelo2 or scelo3 single mutants did not affect VLCFA profiles. However, five of these KCSs were capable of complementing the lethal scelo2; scelo3 double mutant. These rescued strains express novel VLCFA profiles reflecting the different catalytic capabilities of the KCS isozymes. These novel strains offer a platform to explore the relationship between VLCFA profiles and cellular physiology.


Author(s):  
Jingqi Chen ◽  
Oscar P. Kuipers

Lanthipeptides belong to a family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing (methyl)lanthionine residues. Commonly, class I lanthipeptides are synthesized by a gene cluster encoding a precursor peptide (LanA), a biosynthetic machinery (LanBTC), a protease (LanP), a two-component regulatory system (LanRK), and an immunity system (LanI and LanFEG). Although nisin and subtilin are highly similar class I lanthipeptides, the cross-regulation by LanRK and the cross-immunity by LanI and LanFEG between the nisin and subtilin systems have been proven very low. Here, the possibility of the cross-functionality by LanBTC to modify and transport nisin precursor (NisA) and subtilin precursor (SpaS) was evaluated in Bacillus subtilis and Lactococcus lactis . Interestingly, we found that a promiscuous NisBC-SpaT complex is able to synthesize and export nisin precursor, as efficiently as the native nisin biosynthetic machinery NisBTC, in L. lactis , but not in B. subtilis . The assembly of the NisBC-SpaT complex at a single microdomain, close to the old cell pole, was observed by fluorescence microscopy in L. lactis . In contrast, such a complex was not formed in B. subtilis . Furthermore, the isolation of the NisBC-SpaT complex and its subcomplexes from the cytoplasmic membrane of L. lactis by pull-down assays was successfully conducted. Our work demonstrates that the association of LanBC with LanT is critical for the efficient biosynthesis and secretion of the lanthipeptide precursor with complete modifications, and suggests a cooperative mechanism between LanBC and LanT in the modification and transport processes. IMPORTANCE A multimeric synthetase LanBTC complex has been proposed for the in vivo production of class I lanthipeptides. However, it has been demonstrated that LanB, LanC, and LanT can perform their functionality in vivo and in vitro , independently of other Lan proteins. The role of protein-protein interactions, especially between the modification complex LanBC and the transport system LanT, in the biosynthesis process of lanthipeptides is still unclear. In this study, the importance of the presence of a well-installed LanBTC complex in the cell membrane for lanthipeptide biosynthesis and transport was reinforced. In L. lactis , the recruitment of SpaT from the peripheral cell membrane to the cell poles by the NisBC complex was observed, which may explain the mechanism by which secretion of premature peptide is prevented.


2021 ◽  
Author(s):  
Lucydalila Cedillo ◽  
Sainan Li ◽  
Fasih Ahsan ◽  
Sinclair Emans ◽  
Adebanjo Adedoja ◽  
...  

Biguanides, including the world's most commonly prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases, such as cancer. In spite of these promising observations, the full spectrum of the molecular effectors responsible for these health benefits remains elusive. Through unbiased genetic screening in C. elegans, we uncovered a novel role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides govern lifespan extension via a complex effect on the ether lipid landscape requires enzymes responsible for both ether lipid biogenesis and polyunsaturated fatty acid synthesis. Remarkably, loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. Furthermore, overexpression of a single, key ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Jackson T. Baumgartner ◽  
Shaun M. K. McKinnie

The chemical diversity of natural products is established by an elegant network of biosynthetic machinery and controlled by a suite of intracellular and environmental cues. Advances in genomics, transcriptomics, and metabolomics have provided useful insight to understand how organisms respond to abiotic and biotic factors to adjust their chemical output; this has permitted researchers to begin asking bigger-picture questions regarding the ecological significance of these molecules to the producing organism and its community.


2021 ◽  
Author(s):  
Athina Gavriilidou ◽  
Satria A Kautsar ◽  
Nestor Zaburannyi ◽  
Daniel Krug ◽  
Rolf Mueller ◽  
...  

Bacterial secondary metabolites have been studied for decades for their usefulness as drugs, such as antibiotics. However, the identification of new structures has been decelerating, in part due to rediscovery of known compounds. Meanwhile, multi-resistant pathogens continue to emerge, urging the need for new antibiotics. It is unclear how much chemical diversity exists in Nature and whether discovery efforts should be focused on established antibiotic producers or rather on understudied taxa. Here, we surveyed around 170,000 bacterial genomes as well as several thousands of Metagenome Assembled Genomes (MAGs) for their diversity in Biosynthetic Gene Clusters (BGCs) known to encode the biosynthetic machinery for producing secondary metabolites. We used two distinct algorithms to provide a global overview of the biosynthetic diversity present in the sequenced part of the bacterial kingdom. Our results indicate that only 3% of genomic potential for natural products has been experimentally discovered. We connect the emergence of most biosynthetic diversity in evolutionary history close to the taxonomic rank of genus. Despite enormous differences in potential among taxa, we identify Streptomyces as by far the most biosynthetically diverse based on currently available data. Simultaneously, our analysis highlights multiple promising high-producing taxas that have thus far escaped investigation.


2021 ◽  
Author(s):  
Jonathan V. Dietz ◽  
Mathilda M. Willoughby ◽  
Robert B. Piel ◽  
Teresa A. Ross ◽  
Iryna Bohovych ◽  
...  

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied, and all the biosynthetic enzymes have been structurally characterized to varying extents. Nevertheless, our understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Herein we investigate the molecular organization as well as the catalytic and structural features of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses reveal dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity and results in accumulation of highly reactive and potentially toxic tetrapyrrole precursors that may result in oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. Our data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Zamith-Miranda ◽  
Roberta Peres da Silva ◽  
Sneha P. Couvillion ◽  
Erin L. Bredeweg ◽  
Meagan C. Burnet ◽  
...  

Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.


2021 ◽  
Author(s):  
Fu Kuroiwa ◽  
Akira Nishino ◽  
Yasuko Mandal ◽  
Miki Suenaga-Hiromori ◽  
Kakeru Suzuki ◽  
...  

AbstractPrenyltransferases mediate the biosynthesis of various types of polyisoprene compound in living organisms. Natural rubber (NR) of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity, with the proteins HRT1, HRT2, and HRBP having been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes. Cell-free synthesis of HRT1, HRT2, and HRBP in the presence of asolectin nanodiscs revealed that all three proteins were membrane associated. A complex of HRT1 and HRBP formed as a result of co-expression of the two proteins in the presence of nanodiscs manifested marked polyisoprene synthesis activity, whereas neither HRT1, HRT2, or HRBP alone nor a complex of HRT2 and HRBP exhibited such activity. Similar analysis of guayule (Parthenium argentatum) proteins revealed that three HRT1 homologs (CPT1–3) manifested prenyltransferease activity only if co-expressed with the homolog of HRBP (CBP). Our results thus indicate that the core prenyltransferase of the rubber biosynthetic machinery of both the Para rubber tree and guayule is formed by the assembly of heterologous subunits (HRT1 and HRBP in the former species).


Sign in / Sign up

Export Citation Format

Share Document