recombination breakpoints
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hui Zhang ◽  
Shuang Cao ◽  
Yang Gao ◽  
Xiao Sun ◽  
Fanming Jiang ◽  
...  

A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongyu Wei ◽  
Pattara Khamrin ◽  
Kattareeya Kumthip ◽  
Arpaporn Yodmeeklin ◽  
Niwat Maneekarn

Objective: Human astrovirus (HAstV) is recognized as an important cause of acute gastroenteritis in children. Recombination between different genotypes of HAstV can contribute to diversity and evolution of the virus. This study aimed to investigate the emergence of HAstV recombinant strains in pediatric patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, spanning 2011–2020.Methods: A total of 92 archival HAstV strains collected from pediatric patients with acute gastroenteritis during 2011–2020 were further characterized to identify the recombinant strains. The ORF1b and ORF2 junction region of each strain was amplified and sequenced. The obtained sequences were analyzed in comparison with the reference sequences retrieved from GenBank database. Their genotypes were assigned using MEGA X software based on the partial ORF1b (RdRp) and ORF2 (capsid) regions, and the recombination breakpoints of recombinant strains were determined by SimPlot and RDP4 analyses.Results: Five inter-genotype recombinant strains with three recombination patterns of ORF1b/ORF2 of classic HAstV, HAstV8/HAstV1, HAstV8/HAstV3, and HAstV3/HAstV2, were detected. The recombination breakpoints of all strains were located at the 3′-end region of ORF1b close to the ORF1b/ORF2 junction.Conclusion: Several novel inter-genotype recombinant strains of classic HAstV genotypes were detected in pediatric patients with acute gastroenteritis in Chiang Mai, Thailand, during the period of 10 years from 2011 to 2020.


2021 ◽  
Author(s):  
Arne de Klerk ◽  
Phillip Ivan Swanepoel ◽  
Rentia Francis Lourens ◽  
Mpumelelo Zondo ◽  
Isaac Abodunran ◽  
...  

Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination breakpoints at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination breakpoints across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination breakpoint hot-spot locations. We find that while the locations of recombination breakpoints are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination breakpoints most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination breakpoint distributions in coronavirus genomes sampled from nature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Pollett ◽  
Matthew A. Conte ◽  
Mark Sanborn ◽  
Richard G. Jarman ◽  
Grace M. Lidl ◽  
...  

AbstractThe SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.


2021 ◽  
Author(s):  
Yatish Turakhia ◽  
Bryan Thornlow ◽  
Angie S Hinrichs ◽  
Jakob Mcbroome ◽  
Nicolas Ayala ◽  
...  

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral recombination. Low SARS-CoV-2 mutation rates make detecting recombination difficult. Here, we develop and apply a novel phylogenomic method to exhaustively search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. We investigate a 1.6M sample tree, and identify 606 recombination events. Approximately 2.7% of sequenced SARS-CoV-2 genomes have recombinant ancestry. Recombination breakpoints occur disproportionately in the Spike protein region. Our method empowers comprehensive real time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


2021 ◽  
Author(s):  
Katelyn Erbeck ◽  
Roderick B. Gagne ◽  
Simona Kraberger ◽  
Elliott S. Chiu ◽  
Melody Roelke-Parker ◽  
...  

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope ( env ) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1-13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, though we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individual. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-viral interactions that underlie disease pathogenesis in a natural setting. Importance Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective, but highly virulent subgroups. FeLV-B is formed when the 3’ envelope ( env ) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed-colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env . The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


2021 ◽  
Author(s):  
Ben Jackson ◽  
Maciej F Boni ◽  
Matthew J Bull ◽  
Amy Colleran ◽  
Rachel M Colquhoun ◽  
...  

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern, but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of two months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


2021 ◽  
Author(s):  
Simon Pollett ◽  
Matthew A Conte ◽  
Mark Sanborn ◽  
Richard G Jarman ◽  
Grace M. Lidl ◽  
...  

ABSTRACTThe SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.


2021 ◽  
Author(s):  
Katelyn Erbeck ◽  
Roderick B. Gagne ◽  
Simona Kraberger ◽  
Elliott S. Chiu ◽  
Melody Roelke Parker ◽  
...  

AbstractFeline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of FeLV-B recombinant subtypes during natural infection with enhanced virulence. The aim of this study was to examine exogenous FeLV (exFeLV) and enFeLV recombination events in a natural FeLV epizootic. We previously described that of 32 individuals in a closed colony with productive FeLV-A infection, 22 had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints, examining between 1-13 clones per individual to assess sequence diversity and recombination sites. We documented multiple recombination breakpoints resulting in the production of unique FeLV-B genotypes. At least half of the cats harbored more than one FeLV-B variant, and almost all animals had variants similar to those recovered from at least one other individual in the colony. This analysis reveals that FeLV-B is predominantly generated de novo within each host, though horizontal transmission may be inferred based upon FeLV-B sequence identities between individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-viral interactions that underlie disease pathogenesis in a natural setting.ImportanceFeline leukemia virus (FeLV) is a felid retrovirus associated with a variety of disease outcomes. Exogenous FeLV-A is the most common horizontally transmitted virus subgroup. Domestic cats (Felis catus) harbor endogenous copies of FeLV (enFeLV) in their genomes. Recombination between FeLV-A and enFeLV may result in emergence of largely replication-defective, but highly virulent recombinant strains. FeLV-B, the most common recombinant form, results when enFeLV env recombines with FeLV-A during FeLV replication. This study evaluated endogenous-exogenous recombination outcomes in a naturally-infected closed colony of domestic cats to determine recombination sites and FeLV-B genotypic heterogeneity associated with enhanced disease virulence. While FeLV-A and enFeLV genotypes were highly conserved, a large number of unique FeLV-B variants were identified in association with predicted recombination hotspots. The findings provide insight into recombination events between viral and host genomes that result in new, and potentially more pathogenic, viral strains.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1302
Author(s):  
Ana Perez Contreras ◽  
Frank van der Meer ◽  
Sylvia Checkley ◽  
Tomy Joseph ◽  
Robin King ◽  
...  

Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.


Sign in / Sign up

Export Citation Format

Share Document